Теорема о четырехугольнике описанном около окружности

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Теорема о четырехугольнике описанном около окружности

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Теорема о четырехугольнике описанном около окружности

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Теорема о четырехугольнике описанном около окружности

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

Теорема о четырехугольнике описанном около окружности

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Теорема о четырехугольнике описанном около окружности

Теорема о четырехугольнике описанном около окружности

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Теорема о четырехугольнике описанном около окружности

Теорема о четырехугольнике описанном около окружности

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбТеорема о четырехугольнике описанном около окружностиВ любой ромб можно вписать окружность
КвадратТеорема о четырехугольнике описанном около окружностиВ любой квадрат можно вписать окружность
ПрямоугольникТеорема о четырехугольнике описанном около окружностиВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммТеорема о четырехугольнике описанном около окружностиВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидТеорема о четырехугольнике описанном около окружностиВ любой дельтоид можно вписать окружность
ТрапецияТеорема о четырехугольнике описанном около окружностиВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Теорема о четырехугольнике описанном около окружности
КвадратТеорема о четырехугольнике описанном около окружности

В любой квадрат можно вписать окружность

ПрямоугольникТеорема о четырехугольнике описанном около окружности

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммТеорема о четырехугольнике описанном около окружности

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидТеорема о четырехугольнике описанном около окружности

ТрапецияТеорема о четырехугольнике описанном около окружности

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Теорема о четырехугольнике описанном около окружности

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Теорема о четырехугольнике описанном около окружности

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Теорема о четырехугольнике описанном около окружности

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Теорема о четырехугольнике описанном около окружности

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Теорема о четырехугольнике описанном около окружности

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

🎬 Видео

Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классы

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащих

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около четырёхугольникаСкачать

Окружность, описанная около четырёхугольника

Описанный четырехугольникСкачать

Описанный четырехугольник

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

9класс. Описанные около окружности четырехугольники.Скачать

9класс. Описанные около окружности четырехугольники.

Задача об окружности, описанной около четырёхугольникаСкачать

Задача об окружности, описанной около четырёхугольника

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕСкачать

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕ

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Теоремы об окружностях для четырехугольниковСкачать

Теоремы об окружностях для четырехугольников

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. Подготовка к ЕГЭ ЧАСТЬ I #shorts #егэ #огэ #математика #геометрияСкачать

ОПИСАННЫЙ ЧЕТЫРЕХУГОЛЬНИК. Подготовка к ЕГЭ ЧАСТЬ I #shorts #егэ #огэ #математика #геометрия

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4
Поделиться или сохранить к себе: