Свойство стороны четырехугольника описанного около окружности

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Свойство стороны четырехугольника описанного около окружности

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Свойство стороны четырехугольника описанного около окружности

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Свойство стороны четырехугольника описанного около окружности

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

Свойство стороны четырехугольника описанного около окружности

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Свойство стороны четырехугольника описанного около окружности

Свойство стороны четырехугольника описанного около окружности

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Свойство стороны четырехугольника описанного около окружности

Свойство стороны четырехугольника описанного около окружности

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбСвойство стороны четырехугольника описанного около окружностиВ любой ромб можно вписать окружность
КвадратСвойство стороны четырехугольника описанного около окружностиВ любой квадрат можно вписать окружность
ПрямоугольникСвойство стороны четырехугольника описанного около окружностиВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммСвойство стороны четырехугольника описанного около окружностиВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидСвойство стороны четырехугольника описанного около окружностиВ любой дельтоид можно вписать окружность
ТрапецияСвойство стороны четырехугольника описанного около окружностиВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Свойство стороны четырехугольника описанного около окружности
КвадратСвойство стороны четырехугольника описанного около окружности

В любой квадрат можно вписать окружность

ПрямоугольникСвойство стороны четырехугольника описанного около окружности

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммСвойство стороны четырехугольника описанного около окружности

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидСвойство стороны четырехугольника описанного около окружности

ТрапецияСвойство стороны четырехугольника описанного около окружности

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Свойства и признаки описанного четырехугольника.

Свойство стороны четырехугольника описанного около окружности

Описанный четырехугольник — четырехугольник, все стороны которого касаются окружности.

Центр вписанной окружности в четырехугольник — точка пересечения биссектрис всех углов четырехугольника. Не все четырёхугольники можно описать около окружности, так как биссектрисы четырёх углов могут не пересекаться в одной точке.

Основной признак описанного четырехугольника:

Если суммы противоположных сторон четырехугольника равны, то четырехугольник является описанным.

Основное свойство описанного четырехугольника:

Если четырехугольник является описанным, то суммы противоположных сторон этого четырехугольника равны.

Видео:Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классы

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Свойство стороны четырехугольника описанного около окружности

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

📸 Видео

Уроки геометрии. Одно замечательное свойство четырехугольника, описанного вокруг окружности.Скачать

Уроки геометрии. Одно замечательное свойство четырехугольника, описанного вокруг окружности.

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащих

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

2131 Три стороны описанного около окружности четырёхугольника относятся в последовательном порядкеСкачать

2131 Три стороны описанного около окружности четырёхугольника относятся в последовательном порядке

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Свойство четырехугольника, в который можно вписать окружностьСкачать

Свойство четырехугольника, в который можно вписать окружность

2125 периметр четырехугольника описанного около окружности равен 26Скачать

2125 периметр четырехугольника описанного около окружности равен 26

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

свойства вписанного и описанного четырехугольника #SHORTSСкачать

свойства вписанного и описанного четырехугольника #SHORTS

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Свойство сторон описанного четырёхугольника.Скачать

Свойство сторон описанного четырёхугольника.

Свойство описанного четырёхугольникаСкачать

Свойство описанного четырёхугольника

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

ОГЭ. Модуль Геометрия. Периметр четырёхугольника, описанного около окружности, равен 56Скачать

ОГЭ. Модуль Геометрия. Периметр четырёхугольника, описанного около окружности, равен 56
Поделиться или сохранить к себе: