Вписанные и центральные углы |
Углы, образованные хордами, касательными и секущими |
Доказательства теорем об углах, связанных с окружностью |
- Вписанные и центральные углы
- Теоремы о вписанных и центральных углах
- Теоремы об углах, образованных хордами, касательными и секущими
- Доказательства теорем об углах, связанных с окружностью
- Окружность
- Основные термины
- Касательная
- Свойства касательной
- Хорда
- Свойства хорд
- Свойства окружности
- Теорема о касательной и секущей
- Теорема о секущих
- Углы в окружности
- Свойства углов, связанных с окружностью
- Длины и площади
- Вписанные и описанные окружности
- Окружность и треугольник
- Окружность и четырехугольники
- Вписанный угол, опирающийся на диаметр
- 💡 Видео
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема | |||||||||||||||||||||||||||||||||||
Вписанный угол | |||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же дугу равны. | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | ||||||||||||||||||||||||||||||||||||
Вписанный угол | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | ||||||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника |
Вписанный угол | |||||||||||||||||||||||||||||||||
Окружность, описанная около прямоугольного треугольника | |||||||||||||||||||||||||||||||||
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами | |||
Угол, образованный секущими, которые пересекаются вне круга | |||
Угол, образованный касательной и хордой, проходящей через точку касания | |||
Угол, образованный касательной и секущей | |||
Угол, образованный двумя касательными к окружности |
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Видео:Свойство вписанного угла, опирающегося на диаметрСкачать Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство ОкружностьОкружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности. Часть плоскости, ограниченная окружностью называется кругом. Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой. Видео:Взаимное расположение окружности и прямой. 7 класс.Скачать Основные терминыКасательнаяПрямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Свойства касательной
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ХордаОтрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром. Свойства хорд
Дуги, заключенные между параллельными хордами, равны. Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD. Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать Свойства окружности
Теорема о касательной и секущейЕсли из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB . Теорема о секущихЕсли из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD. Видео:Окружность. 7 класс.Скачать Углы в окружностиЦентральным углом в окружности называется плоский угол с вершиной в ее центре. Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла. Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром. Свойства углов, связанных с окружностью
Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны. Вписанный угол, опирающийся на диаметр, равен 90°. Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами. Видео:Окружность, диаметр, хорда геометрия 7 классСкачать Длины и площади
Площадь S круга радиуса R вычисляется по формуле: Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле: Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле: Видео:Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать Вписанные и описанные окружностиОкружность и треугольник
где S — площадь треугольника, а — полупериметр; центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле: здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника; Окружность и четырехугольники
в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:
Видео:Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать Вписанный угол, опирающийся на диаметрВписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле. Свойство вписанного угла, опирающегося на диаметр (следствие из теоремы о вписанном угле) Вписанный угол, опирающийся на диаметр, прямой. Дано: Так как AC- диаметр, то ∠AOC=180º. ∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол. Следовательно, по теореме о вписанном угле, Что и требовалось доказать. Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой. Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой. Другой вариант формулировки следствия: Диаметр виден из любой точки окружности под углом 90º. Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так: Вписанный угол, опирающийся на полуокружность — прямой. 💡 ВидеоВписанный угол, который опирается на диаметрСкачать Окружность и круг, 6 классСкачать №147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВССкачать 7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать ОГЭ Задание 26 Свойство диаметра и хордыСкачать 8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 классСкачать Найти расстояние от центра окружности до вершины прямого углаСкачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Угол между хордой и касательнойСкачать |