- Теорема
- Доказательство
- Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
- Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
- Формулы для радиуса окружности, вписанной в треугольник
- Вывод формул для радиуса окружности, вписанной в треугольник
- Свойства биссектрис треугольника
- 🎥 Видео
Теорема
Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.
Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.
Доказательство
1) Дано: ВАС, АМ — биссектриса, МК АВ, MLАС.
Доказать: MK = ML
Доказательство:
Рассмотрим АМК и AML: МКАВ, MLАС, поэтому рассматриваемые треугольники прямоугольные. АМ — общая гипотенуза, 1 = 2, т.к. луч АМ — биссектриса, следовательно, АМК = AML, по гипотенузе и острому углу, а в равных треугольниках против соответственно равных углов лежат равные стороны, поэтому MK = ML.
2) Дано: ВАС, MK = ML, МК АВ, MLАС.
Доказать: АМ — биссектриса ВАС
Доказательство:
Рассмотрим АМК и AML: МКАВ, MLАС, поэтому рассматриваемые треугольники прямоугольные. АМ — общая гипотенуза, MK = ML по условию, следовательно, АМК = AML, по гипотенузе и катету, а в равных треугольниках против соответственно равных сторон лежат равные углы, поэтому 1 = 2 , а это означает, что луч АМ — биссектриса ВАС. Теорема доказана.
Следствие 1
Геометрическим местом точек плоскости, лежащих внутри неразвёрнутого угла и равноудалённых от сторон угла, является биссектриса этого угла. |
Следствие 2
Биссектрисы треугольника пересекаются в одной точке. |
В самом деле, обозначим буквой О точку пересечения биссектрис АА1 и ВВ1 треугольника АВС и проведем перпендикуляры ОК, OL и ОМ соответственно к прямым АВ, ВС и СА.
По доказанной теореме ОК = ОМ и ОК = OL. Поэтому ОМ = OL, т.е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.
Поделись с друзьями в социальных сетях:
Видео:СВОЙСТВО БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла |
Формулы для радиуса окружности, вписанной в треугольник |
Вывод формул для радиуса окружности, вписанной в треугольник |
Видео:8 класс, 35 урок, Свойства биссектрисы углаСкачать
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Видео:ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
Фигура | Рисунок | Формула | Обозначения | |||||||||||||||||||
Произвольный треугольник | ||||||||||||||||||||||
Равнобедренный треугольник | ||||||||||||||||||||||
Равносторонний треугольник | ||||||||||||||||||||||
Прямоугольный треугольник |
Произвольный треугольник | ||
Равнобедренный треугольник | ||
Равносторонний треугольник | ||
Прямоугольный треугольник | ||
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Видео:Свойства биссектрисыСкачать
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
Видео:3 свойства биссектрисы #shortsСкачать
Свойства биссектрис треугольника
Три биссектрисы треугольника пересекаются в одной точке, являющейся центром окружности, вписанной в треугольник
Биссектриса угла треугольника — это луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части.
Биссектриса угла треугольника – это множество точек, равноудаленных от его сторон. Это значит, что от любой точки, лежащей на биссектрисе угла, расстояния до сторон угла равны.
Пусть точка О лежит на биссектрисе угла АВС. Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую, поэтому треугольники ВОС и ВОА на рисунке – прямоугольные.
Здесь отрезки ОА и ОС – расстояния от точки О до сторон ВА и ВС угла АВС.
Прямоугольные треугольники ВОС и ВОА равны по острому углу и гипотенузе. Значит, ОА = ОС и любая точка, лежащая на биссектрисе угла, равноудалена от его сторон.
Пусть биссектрисы углов А и В треугольника пересекаются в точке Р. Тогда точка Р равноудалена от сторон АВ и АС, поскольку лежит на биссектрисе угла А, а также от сторон ВС и ВА, поскольку лежит на биссектрисе угла В. А это значит, что точка Р равноудалена и от прямых АС и ВС, то есть лежит на биссектрисе угла C.
Задача ЕГЭ по теме «Биссектрисы углов треугольника»
В треугольнике ABC угол A равен , угол B равен . AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.
Найдем третий угол треугольника ABC – угол C. Он равен .
Заметим, что в треугольнике AOC острые углы равны половинкам углов CAB и ACB, то есть и .
Угол AOF – внешний угол треугольника AOC. Он равен сумме внутренних углов, не смежных с ним, то есть .
🎥 Видео
Cекретное свойство биссектрисыСкачать
Построение биссектрисы угла. 7 класс.Скачать
Свойство биссектрисы треугольника с доказательствомСкачать
Свойства биссектрисы #shortsСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Геометрия 8 класс (Урок№29 - Свойство биссектрисы угла.)Скачать
Свойство биссектрисы треугольникаСкачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
Свойство биссектрисы треугольникаСкачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Урок по теме СВОЙСТВА БИССЕКТРИСЫ УГЛА 8 КЛАСС ГЕОМЕТРИЯСкачать
Свойства биссектрисы треугольникаСкачать
Свойства биссектрисы треугольникаСкачать
Свойство биссектрисы углаСкачать
Формула для биссектрисы треугольникаСкачать