Свойства центра окружности вписанной в угол

Центр окружности, вписанной в угол

Окружность называется вписанной в угол, если она касается сторон угла.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Свойства центра окружности вписанной в уголДано :

окружность (O; R) вписана в угол ABC, O∈BD

Доказать : BD — биссектриса ∠ABD

Свойства центра окружности вписанной в уголПроведём из точки O радиусы OF и OP в точки касания.OF=OP=R

Свойства центра окружности вписанной в угол

Значит, прямоугольные треугольники BOF и BOP равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих углов: ∠FBO=∠PBO.

Следовательно, BO — биссектриса угла ABC.

Что и требовалось доказать.

OF=OP (как радиусы). Значит, точка O равноудалена от сторон угла ABC. А так как любая точка внутри неразвёрнутого угла, равноудалённая от сторон этого угла, лежит на его биссектрисе, то BO — биссектриса угла ABC.

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Справочник репетитора по математике. Свойства окружности и ее элементов

Теоретические справочные материалы по геометрии для выполнения заданий от репетитора по математике. В помощь ученикам при решении задач.

1) Терема о вписанном угле в окружность.

Свойства центра окружности вписанной в уголТеорема: вписанный в окружность угол равен половие градусной меры дуги, на которую он опирается (или половине центрального угла, соответствующего данной дуге), то есть Свойства центра окружности вписанной в угол.

2) Следствия из теоремы о вписанном угле в окружность.

2.1) Свойство углов, опирающихся на одну дугу.
Свойства центра окружности вписанной в угол
Теорема:
если вписанные углы опираются на одну дугу, то они равны (если они опираются на дополнителные дуги, их сумма равна Свойства центра окружности вписанной в угол

Свойства центра окружности вписанной в угол

2.2) Свойство угла, опирающегося на диаметр.
Свойства центра окружности вписанной в угол
Теорема:
вписанный угол в окружность опирается на диаметр тогда и только тогда, когда он прямой.

AC-диаметр Свойства центра окружности вписанной в угол

3) Cвойство отрезков касательных. Окружность, вписанная в угол.
Свойства центра окружности вписанной в угол
Теорема 1: если из одной точки, не лежащей на окружности, проведены к ней две касательные, то их отрезки равны, то есть PB=PC.

Теорема 2: Если окружность вписана в угол, то ее центр лежит на биссектрисе этого угла, то есть PO-биссектриса.

4) Свойство отрезков хорд при внутреннем пересечении секущих.
Свойства центра окружности вписанной в уголТеорема 1: произведение отрезков одной хорды равно произведению отрезков другой хорды, то есть

Свойства центра окружности вписанной в угол= Свойства центра окружности вписанной в угол.

Теорема 2:
угол между хордами равен полусумме дуг, которые этими хордами образуются на окружности, то есть
Свойства центра окружности вписанной в угол

5) Свойство отрезков хорд при внешнем пересечении секущих.
Свойства центра окружности вписанной в угол
Теорема 1: произведение отрезков одной секущей равно произведению отрезков другой, то есть

Свойства центра окружности вписанной в угол= Свойства центра окружности вписанной в угол.

Теорема 2:
угол между секущими равен полуразности соответствующих им дуг, то есть
Свойства центра окружности вписанной в угол

Комментарий репетитора по математике: Обратитте внимание на общую закономерность 4-го и 5-го свойства: хорды в произведениях не участвуют, а сами равенства (с частями и продолжениями хорд) при сохранении обозначений являются точной копией друг друга. Также можно подметить общую структуру равенств с дугами. Репетитору по математике стоит обратить на этих особенностях внимание ученика.

6) Свойства квадрата отрезка касательной
Свойства центра окружности вписанной в угол
Теорема 1:
Квадрат отрезка касательной равен произведению отрезков секущей, то есть

Свойства центра окружности вписанной в угол

Теорема 2:
угол между касательной и секущей равен полуразности соответствующих им дуг, то есть

Свойства центра окружности вписанной в угол

7) Угол между касательной и секущей
Свойства центра окружности вписанной в угол
Теорема:угол между касательной и секущей, проведенными из одной точки окружности, равен поливине дуги, которую отсекает сукущая (половине центрального угла, соответствующего данной дуге).

Свойства центра окружности вписанной в угол.

Колпаков Александр Николаевич, репетитор по математике.

Уважаемый коллега, ваш материал на сайте является для меня хорошим методическим подспорьем. Спасибо.

Александр Николаевич, спасибо за методики, я восхищена Вашим трудолюбием и профессионализмом.

Уважаемый Александр Николаевич! Полезность вашего материала безгранична! Огромнейшее спасибо за справочные материалы, их оформление. Я еще не со всеми ознакомилась. Спасибо за помощь репетиторам по математике, школьным преподавателям и ученикам! Вы Учитель с большой буквы!

Спасибо за хороший материал, готовимся к олимпиаде по математике.

Александр Николаевич, большое спасибо за материал! У меня завтра экзамен, и ваш труд поможет сдать мне его на хорошую оценку. Так, как я поняла все по ваши справочникам, мне не объяснит ни один учитель — репетитор. Спасибо вам большое!

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Окружность: вписанная в многоугольник или угол

Определения

Окружность (S) вписана в угол (alpha) , если (S) касается сторон угла (alpha) .

Окружность (S) вписана в многоугольник (P) , если (S) касается всех сторон (P) .

В этом случае многоугольник (P) называется описанным около окружности.

Теорема

Центр вписанной в угол окружности лежит на его биссектрисе.

Доказательство

Свойства центра окружности вписанной в угол

Пусть (O) – центр некоторой окружности, вписанной в угол (BAC) . Пусть (B’) – точка касания окружности и (AB) , а (C’) – точка касания окружности и (AC) , тогда (OB’) и (OC’) – радиусы, проведённые в точки касания, следовательно, (OC’perp AC) , (OB’perp AB) , (OC’ = OB’) .

Значит, треугольники (AC’O) и (AB’O) – прямоугольные треугольники, у которых равны катеты и общая гипотенуза, следовательно, они равны, откуда (angle CAO = angle BAO) , что и требовалось доказать.

Теорема

В любой треугольник можно вписать единственную окружность, причём центр этой вписанной окружности есть точка пересечения биссектрис треугольника.

Доказательство

Проведем биссектрисы углов (angle A) и (angle B) . Пусть они пересеклись в точке (O) .

Свойства центра окружности вписанной в угол

Т.к. (O) лежит на биссектрисе (angle A) , то расстояния от точки (O) до сторон угла равны: (ON=OP) .

Т.к. (O) также лежит на биссектрисе (angle B) , то (ON=OK) . Таким образом, (OP=OK) , следовательно, точка (O) равноудалена от сторон угла (angle C) , следовательно, лежит на его биссектрисе, т.е. (CO) – биссектриса (angle C) .

Таким образом, точки (N, K, P) равноудалены от точки (O) , то есть лежат на одной окружности. По определению это и есть вписанная в треугольник окружность.

Данная окружность единственна, т.к. если предположить, что существует другая вписанная в (triangle ABC) окружность, то она будет иметь тот же центр и тот же радиус, то есть будет совпадать с первой окружностью.

Таким образом, попутно была доказана следующая теорема:

Следствие

Биссектрисы треугольника пересекаются в одной точке.

Теорема о площади описанного треугольника

Если (a,b,c) – стороны треугольника, а (r) – радиус вписанной в него окружности, то площадь треугольника [S_=pcdot r] где (p=dfrac2) – полупериметр треугольника.

Доказательство

Свойства центра окружности вписанной в угол

Но (ON=OK=OP=r) – радиусы вписанной окружности, следовательно,

Следствие

Если в многоугольник вписана окружность и (r) – ее радиус, то площадь многоугольника равна произведению полупериметра многоугольника на (r) : [S_<text>=pcdot r]

Теорема

В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.

Доказательство

Необходимость. Докажем, что если в (ABCD) вписана окружность, то (AB+CD=BC+AD) .

Свойства центра окружности вписанной в угол

Пусть (M,N,K,P) – точки касания окружности и сторон четырехугольника. Тогда (AM, AP) – отрезки касательных к окружности, проведенные из одной точки, следовательно, (AM=AP=a) . Аналогично, (BM=BN=b, CN=CK=c, DK=DP=d) .

Достаточность. Докажем, что если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.

Проведем биссектрисы углов (angle A) и (angle B) , пусть они пересекутся в точке (O) . Тогда точка (O) равноудалена от сторон этих углов, то есть от (AB, BC, AD) . Впишем окружность в (angle A) и (angle B) с центром в точке (O) . Докажем, что эта окружность будет касаться и стороны (CD) .

Свойства центра окружности вписанной в угол

Предположим, что это не так. Тогда (CD) либо является секущей, либо не имеет общих точек с окружностью. Рассмотрим второй случай (первый будет доказываться аналогично).

Проведем касательную прямую (C’D’ parallel CD) (как показано на рисунке). Тогда (ABC’D’) – описанный четырехугольник, следовательно, (AB+C’D’=BC’+AD’) .

Т.к. (BC’=BC-CC’, AD’=AD-DD’) , то:

[AB+C’D’=BC-CC’+AD-DD’ Rightarrow C’D’+CC’+DD’=BC+AD-AB=CD]

Получили, что в четырехугольнике (C’CDD’) сумма трех сторон равна четвертой, что невозможно*. Следовательно, предположение ошибочно, значит, (CD) касается окружности.

Замечание*. Докажем, что в выпуклом четырехугольнике не может сторона равняться сумме трех других.

Свойства центра окружности вписанной в угол

Т.к. в любом треугольнике сумма двух сторон всегда больше третьей, то (a+x>d) и (b+c>x) . Складывая данные неравенства, получим: (a+x+b+c>d+x Rightarrow a+b+c>d) . Следовательно, сумма любых трех сторон всегда больше четвертой стороны.

Теоремы

1. Если в параллелограмм вписана окружность, то он – ромб (рис. 1).

2. Если в прямоугольник вписана окружность, то он – квадрат (рис. 2).

Свойства центра окружности вписанной в угол

Верны и обратные утверждения: в любой ромб и квадрат можно вписать окружность, и притом только одну.

Доказательство

1) Рассмотрим параллелограмм (ABCD) , в который вписана окружность. Тогда (AB+CD=BC+AD) . Но в параллелограмме противоположные стороны равны, т.е. (AB=CD, BC=AD) . Следовательно, (2AB=2BC) , а значит, (AB=BC=CD=AD) , т.е. это ромб.

Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей ромба.

2) Рассмотрим прямоугольник (QWER) . Т.к. прямоугольник является параллелограммом, то согласно первому пункту (QW=WE=ER=RQ) , т.е. это ромб. Но т.к. все углы у него прямые, то это квадрат.

Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей квадрата.

🔍 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Радиус описанной окружностиСкачать

Радиус описанной окружности

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

ЕГЭ Задание 16 Окружности вписанные в уголСкачать

ЕГЭ Задание 16 Окружности вписанные в угол

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Геометрия Точка O центр окружности вписанной в треугольник ABC BC = a AC = b угол AOB = 120 НайдитеСкачать

Геометрия Точка O центр окружности вписанной в треугольник ABC BC = a AC = b угол AOB = 120 Найдите

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать

Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис Трушин

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104
Поделиться или сохранить к себе: