Общая хорда двух пересекающихся окружностей перпендикулярна прямой, проходящей через центры этих окружностей.
Дано : окр. (O1; R) ∩ окр. (O2; r)=A, B.
Соединим центры окружностей с точками A и B. Обозначим точку пересечения прямой O1O2 с хордой AB как F.
Рассмотрим треугольники O1AO2 и O1BO2.
3) O1O2 — общая сторона.
Из равенства треугольников следует равенство соответствующих углов: ∠AO1F=BO1F, то есть O1F- биссектриса угла AO1B.
Треугольник AO1B — равнобедренный с основанием AB (O1A=O1B=R). Следовательно, биссектриса O1F является также его высотой и медианой. Таким образом,
Аналогично доказывается, что
По теореме о существовании и единственности прямой, перпендикулярной данной,через точку F можно провести только одну прямую, перпендикулярную данной прямой AB.
Следовательно, центры окружностей O1, O2 и точка F лежат на одной прямой O1O2, а общая хорда окружностей перпендикулярна этой прямой:
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- Хорда, секущая, касательная
- Определения
- Свойства
- 🔍 Видео
Видео:Теорема о числе точек пересечения двух окружностейСкачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Видео:Геометрия Общая хорда двух пересекающихся окружностей видна из их центров под углами 90 и 60. НайтиСкачать
Взаимное расположение двух окружностей
Взаимное расположение на плоскости двух окружностей радиусов r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей
Расстояние между центрами окружностей больше суммы их радиусов
Расстояние между центрами окружностей равно сумме их радиусов
Расстояние между центрами окружностей равно разности их радиусов
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов
r1 – r2 лежит внутри другой
Расстояние между центрами окружностей меньше разности их радиусов
d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей
Расстояние между центрами окружностей больше суммы их радиусов
Расстояние между центрами окружностей равно сумме их радиусов
Расстояние между центрами окружностей равно разности их радиусов
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов
r1 – r2 лежит внутри другой
Расстояние между центрами окружностей меньше разности их радиусов
d r1 и r2 с центрами O1 и O2 определяется расстоянием d между центрами этих окружностей
Расстояние между центрами окружностей равно разности их радиусов
Расстояние между центрами окружностей меньше разности их радиусов
d внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.
Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.
Существует единственная общая внешняя касательная. Других общих касательных нет.
Существуют две общих внешних касательных. Других общих касательных нет.
Существует единственная общая внутренняя касательная, а также
две общих внешних касательных. Других общих касательных нет.
Каждая из окружностей лежит вне другой
Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.
Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.
Существует единственная общая внешняя касательная. Других общих касательных нет.
Существуют две общих внешних касательных. Других общих касательных нет.
Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.
Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Прямую называют внешней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по одну сторону от этой прямой.
Прямую называют внутренней касательной к двум окружностям, если она касается каждой из окружностей, а окружности лежат по разные стороны от этой прямой.
Существует единственная общая внешняя касательная. Других общих касательных нет.
Существуют две общих внешних касательных. Других общих касательных нет.
Существует единственная общая внутренняя касательная, а также две общих внешних касательных. Других общих касательных нет.
Существуют две общих внешних касательных, а также две общих внутренних касательных. Других общих касательных нет
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Формулы для длин общих касательных и общей хорды двух окружностей
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Внутреннее касание двух окружностей |
Окружности пересекаются в двух точках |
Внешнее касание двух окружностей |
Каждая из окружностей лежит вне другой |
Длина общей внешней касательной к двум окружностям вычисляется по формуле
Длина общей внутренней касательной к двум окружностям вычисляется по формуле
Длина общей хорды двух окружностей вычисляется по формуле
Фигура | Рисунок | Формула |
Внешняя касательная к двум окружностям | ||
Внутренняя касательная к двум окружностям | ||
Общая хорда двух пересекающихся окружностей |
Длина общей внешней касательной к двум окружностям вычисляется по формуле
Длина общей внутренней касательной к двум окружностям вычисляется по формуле
Длина общей хорды двух окружностей вычисляется по формуле
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Общая хорда двух пересекающихся окружностей | |
Длина общей внешней касательной к двум окружностям вычисляется по формуле
Длина общей внутренней касательной к двум окружностям вычисляется по формуле
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:Свойство хорд, пересекающихся внутри окружностиСкачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, Видео:Теорема о произведении отрезков пересекающихся хорд.Скачать Хорда, секущая, касательнаяВидео:Геометрия В точках пересечения двух окружностей с радиусами 4 и 8 см касательные к ним взаимноСкачать ОпределенияХорда – отрезок, соединяющий две точки окружности. В частности, хорда, проходящая через центр окружности, называется диаметром . Секущей к окружности называется прямая, которая пересекает окружность в двух различных точках. Касательная к окружности — прямая, имеющая с окружностью единственную общую точку. Видео:№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать СвойстваРадиус, проведенный в точку касания, перпендикулярен касательной Отрезки касательных, проведенных к окружности из одной точки, равны. Отрезки пересекающихся хорд связаны соотношением: Произведения отрезков секущих, проведенных из одной точки, равны: Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки: Если две окружности касаются внешним образом, то длина отрезка общей внешней касательной равна удвоенному среднему пропорциональному их радиусов Видеодоказательство Чтобы не потерять страничку, вы можете сохранить ее у себя: 🔍 ВидеоЗадание 24 Две пересекающиеся окружностиСкачать Планиметрия 11 |mathus.ru| расстояние между центрами пересекающихся окружностейСкачать Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать Всё про углы в окружности. Геометрия | МатематикаСкачать #207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать Алгоритмы. Пересечение окружностейСкачать Взаимное расположение окружностей. Точки пересечения окружностейСкачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Математика Радиусы двух пересекающихся окружностей равны 17 см и 39 см, а расстояние между ихСкачать Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать Общая хорда двух окружностейСкачать Пересечение двух окружностейСкачать Теорема об отрезках хорд и секущихСкачать |