Свойства дуг хорд и углов окружности

Окружность

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Основные термины


Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной


  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд


  1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Дуги, заключенные между параллельными хордами, равны.

Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Свойства окружности


  1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
  2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью


  1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.

Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Видео:Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

Длины и площади


  1. Длина окружности C радиуса R вычисляется по формуле:

Площадь S круга радиуса R вычисляется по формуле:

Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Видео:ГЕОМЕТРИЯ (урок 14) окружности, дуги, хордыСкачать

ГЕОМЕТРИЯ (урок 14) окружности, дуги, хорды

Вписанные и описанные окружности


Окружность и треугольник


  • центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:

где S — площадь треугольника, а — полупериметр;

центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;

  • центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;
  • центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
  • Окружность и четырехугольники


    • около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

    • около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
    • около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
    • в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

    Видео:№659. Докажите, что градусные меры дуг окружности, заключенных между параллельными хордамиСкачать

    №659. Докажите, что градусные меры дуг окружности, заключенных между параллельными хордами

    Отрезки и прямые, связанные с окружностью. Теорема о бабочке

    Свойства дуг хорд и углов окружностиОтрезки и прямые, связанные с окружностью
    Свойства дуг хорд и углов окружностиСвойства хорд и дуг окружности
    Свойства дуг хорд и углов окружностиТеоремы о длинах хорд, касательных и секущих
    Свойства дуг хорд и углов окружностиДоказательства теорем о длинах хорд, касательных и секущих
    Свойства дуг хорд и углов окружностиТеорема о бабочке

    Свойства дуг хорд и углов окружности

    Видео:Угол между хордой и касательнойСкачать

    Угол между хордой и касательной

    Отрезки и прямые, связанные с окружностью

    Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

    Конечная часть плоскости, ограниченная окружностью

    Отрезок, соединяющий центр окружности с любой точкой окружности

    Отрезок, соединяющий две любые точки окружности

    Хорда, проходящая через центр окружности.

    Диаметр является самой длинной хордой окружности

    Прямая, имеющая с окружностью только одну общую точку.

    Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

    Прямая, пересекающая окружность в двух точках

    ФигураРисунокОпределение и свойства
    ОкружностьСвойства дуг хорд и углов окружности
    КругСвойства дуг хорд и углов окружности
    РадиусСвойства дуг хорд и углов окружности
    ХордаСвойства дуг хорд и углов окружности
    ДиаметрСвойства дуг хорд и углов окружности
    КасательнаяСвойства дуг хорд и углов окружности
    СекущаяСвойства дуг хорд и углов окружности
    Окружность
    Свойства дуг хорд и углов окружности

    Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

    КругСвойства дуг хорд и углов окружности

    Конечная часть плоскости, ограниченная окружностью

    РадиусСвойства дуг хорд и углов окружности

    Отрезок, соединяющий центр окружности с любой точкой окружности

    ХордаСвойства дуг хорд и углов окружности

    Отрезок, соединяющий две любые точки окружности

    ДиаметрСвойства дуг хорд и углов окружности

    Хорда, проходящая через центр окружности.

    Диаметр является самой длинной хордой окружности

    КасательнаяСвойства дуг хорд и углов окружности

    Прямая, имеющая с окружностью только одну общую точку.

    Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

    СекущаяСвойства дуг хорд и углов окружности

    Прямая, пересекающая окружность в двух точках

    Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

    8 класс, 33 урок, Градусная мера дуги окружности

    Свойства хорд и дуг окружности

    ФигураРисунокСвойство
    Диаметр, перпендикулярный к хордеСвойства дуг хорд и углов окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
    Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
    Равные хордыСвойства дуг хорд и углов окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
    Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
    Две хорды разной длиныСвойства дуг хорд и углов окружностиБольшая из двух хорд расположена ближе к центру окружности.
    Равные дугиСвойства дуг хорд и углов окружностиУ равных дуг равны и хорды.
    Параллельные хордыСвойства дуг хорд и углов окружностиДуги, заключённые между параллельными хордами, равны.
    Диаметр, перпендикулярный к хорде
    Свойства дуг хорд и углов окружности

    Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

    Диаметр, проходящий через середину хордыСвойства дуг хорд и углов окружности

    Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

    Равные хордыСвойства дуг хорд и углов окружности

    Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

    Хорды, равноудалённые от центра окружностиСвойства дуг хорд и углов окружности

    Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

    Две хорды разной длиныСвойства дуг хорд и углов окружности

    Большая из двух хорд расположена ближе к центру окружности.

    Равные дугиСвойства дуг хорд и углов окружности

    У равных дуг равны и хорды.

    Параллельные хордыСвойства дуг хорд и углов окружности

    Дуги, заключённые между параллельными хордами, равны.

    Видео:Вписанные углы в окружностиСкачать

    Вписанные углы в окружности

    Теоремы о длинах хорд, касательных и секущих

    Произведения длин отрезков, на которые разбита каждая из хорд, равны:

    Свойства дуг хорд и углов окружности

    Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    ФигураРисунокТеорема
    Пересекающиеся хордыСвойства дуг хорд и углов окружности
    Касательные, проведённые к окружности из одной точкиСвойства дуг хорд и углов окружности
    Касательная и секущая, проведённые к окружности из одной точкиСвойства дуг хорд и углов окружности
    Секущие, проведённые из одной точки вне кругаСвойства дуг хорд и углов окружности

    Произведения длин отрезков, на которые разбита каждая из хорд, равны:

    Свойства дуг хорд и углов окружности

    Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Пересекающиеся хорды
    Свойства дуг хорд и углов окружности
    Касательные, проведённые к окружности из одной точки
    Свойства дуг хорд и углов окружности
    Касательная и секущая, проведённые к окружности из одной точки
    Свойства дуг хорд и углов окружности
    Секущие, проведённые из одной точки вне круга
    Свойства дуг хорд и углов окружности
    Пересекающиеся хорды
    Свойства дуг хорд и углов окружности

    Произведения длин отрезков, на которые разбита каждая из хорд, равны:

    Свойства дуг хорд и углов окружности

    Касательные, проведённые к окружности из одной точки

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

    Касательная и секущая, проведённые к окружности из одной точки

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Секущие, проведённые из одной точки вне круга

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Видео:Длина дуги окружности. 9 класс.Скачать

    Длина дуги окружности. 9 класс.

    Доказательства теорем о длинах хорд, касательных и секущих

    Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Тогда справедливо равенство

    Свойства дуг хорд и углов окружности

    Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

    Свойства дуг хорд и углов окружности

    откуда и вытекает требуемое утверждение.

    Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

    Свойства дуг хорд и углов окружности

    Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

    Свойства дуг хорд и углов окружности

    откуда и вытекает требуемое утверждение.

    Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

    Свойства дуг хорд и углов окружности

    Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Точка B – точка касания. В силу теоремы 2 справедливы равенства

    Свойства дуг хорд и углов окружности

    откуда и вытекает требуемое утверждение.

    Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

    Окружность, диаметр, хорда геометрия 7 класс

    Теорема о бабочке

    Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Воспользовавшись теоремой 1, получим

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Воспользовавшись равенствами (1) и (2), получим

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Свойства дуг хорд и углов окружности

    Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

    Свойства дуг хорд и углов окружности

    откуда вытекает равенство

    что и завершает доказательство теоремы о бабочке.

    Видео:Окружность. 7 класс.Скачать

    Окружность. 7 класс.

    Геометрия. Урок 5. Окружность

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

    Свойства дуг хорд и углов окружности

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Определение окружности
    • Отрезки в окружности

    Видео:Свойства хорд окружностиСкачать

    Свойства хорд окружности

    Определение окружности

    Окружность – геометрическое место точек, равноудаленных от данной точки.

    Эта точка называется центром окружности .

    Свойства дуг хорд и углов окружности

    Видео:Углы, вписанные в окружность. 9 класс.Скачать

    Углы, вписанные в окружность. 9 класс.

    Отрезки в окружности

    Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

    Хорда a – отрезок, соединяющий две точки на окружности.

    Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

    O A – радиус, D E – хорда, B C – диаметр.

    Теорема 1:
    Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

    Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

    Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

    Теорема 2:
    Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

    Теорема 3:
    Касательная перпендикулярна радиусу, проведенному к точке касания.

    Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

    Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

    Дуга в окружности

    Часть окружности, заключенная между двумя точками, называется дугой окружности .

    Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

    Теорема 4:
    Равные хорды стягивают равные дуги.

    Если A B = C D , то ∪ A B = ∪ C D

    Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

    Окружнось. Зависимость длины хорды, от длины дуги.

    Углы в окружности

    В окружности существует два типа углов: центральные и вписанные.

    Центральный угол – угол, вершина которого лежит в центре окружности.

    ∠ A O B – центральный.

    Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

    Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

    Градусная мара всей окружности равна 360 ° .

    Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

    ∠ A C B – вписанный.

    Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

    Теорема 5:
    Вписанные углы, опирающиеся на одну и ту же дугу, равны .

    ∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

    Теорема 6:
    Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

    ∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

    Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

    ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

    Длина окружности, длина дуги

    Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

    Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

    Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

    Длина окружности находится по формуле:

    Длина дуги окружности , на которую опирается центральный угол α равна:

    l α = π R 180 ∘ ⋅ α

    Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

    Площадь круга и его частей

    Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

    Круг – часть пространства, которая находится внутри окружности.

    Иными словами, окружность – это граница, а круг – это то, что внутри.

    Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

    Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

    Площадь круга находится по формуле: S = π R 2

    Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

    Примеры сектора в реальной жизни: кусок пиццы, веер.

    Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

    Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

    Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

    Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

    S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

    Видео:Угол между хордой и касательнойСкачать

    Угол между хордой и касательной

    Теорема синусов

    Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

    a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

    Видео:ЕГЭ-2022 ||Задание №6 || Найти длину хордыСкачать

    ЕГЭ-2022 ||Задание №6 || Найти длину хорды

    Примеры решений заданий из ОГЭ

    Модуль геометрия: задания, связанные с окружностями.

    Поделиться или сохранить к себе: