Сторона квадрата равна 48 найдите радиус вписанной окружности

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Сторона квадрата равна 48 найдите радиус вписанной окружности

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать

Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Сторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задание № 1092 - Геометрия 9 класс (Атанасян)Скачать

Задание № 1092 - Геометрия 9 класс (Атанасян)

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Сторона квадрата равна 48 найдите радиус вписанной окружности

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Сторона квадрата равна 48 найдите радиус вписанной окружности
Сторона квадрата равна 48 найдите радиус вписанной окружности.(1)

Из равенства (1) найдем d:

Сторона квадрата равна 48 найдите радиус вписанной окружности.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

Задача 6 №27923 ЕГЭ по математике. Урок 140

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:ПОДРОБНОЕ РЕШЕНИЕ ВОСЕМНАДЦАТОГО ЗАДАНИЯ ОГЭ МАТЕМАТИКА 2018Скачать

ПОДРОБНОЕ РЕШЕНИЕ ВОСЕМНАДЦАТОГО ЗАДАНИЯ ОГЭ МАТЕМАТИКА 2018

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Сторона квадрата равна 48 найдите радиус вписанной окружности(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Сторона квадрата равна 48 найдите радиус вписанной окружности(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:15 задание треугольники огэ по математике / маттаймСкачать

15 задание треугольники огэ по математике / маттайм

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Сторона квадрата равна 48 найдите радиус вписанной окружности
Сторона квадрата равна 48 найдите радиус вписанной окружности(5)

Из формулы (5) найдем R:

Сторона квадрата равна 48 найдите радиус вписанной окружности
Сторона квадрата равна 48 найдите радиус вписанной окружности(6)

или, умножая числитель и знаменатель на Сторона квадрата равна 48 найдите радиус вписанной окружности, получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Сторона квадрата равна 48 найдите радиус вписанной окружности
Сторона квадрата равна 48 найдите радиус вписанной окружности.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Сторона квадрата равна 48 найдите радиус вписанной окружностиНайти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Сторона квадрата равна 48 найдите радиус вписанной окружностив (8), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:17 задание ОГЭ по математикеСкачать

17 задание ОГЭ по математике

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Сторона квадрата равна 48 найдите радиус вписанной окружности(9)

где Сторона квадрата равна 48 найдите радиус вписанной окружности− сторона квадрата.

Пример 6. Сторона квадрата равен Сторона квадрата равна 48 найдите радиус вписанной окружности. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Сторона квадрата равна 48 найдите радиус вписанной окружностив (9), получим:

Сторона квадрата равна 48 найдите радиус вписанной окружности

Ответ: Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Сторона квадрата равна 48 найдите радиус вписанной окружности

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Сторона квадрата равна 48 найдите радиус вписанной окружности

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Сторона квадрата равна 48 найдите радиус вписанной окружности(10)

Так как AD и BC перпендикулярны, то

Сторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружности(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Сторона квадрата равна 48 найдите радиус вписанной окружности(12)

Эти реугольники также равнобедренные. Тогда

Сторона квадрата равна 48 найдите радиус вписанной окружностиСторона квадрата равна 48 найдите радиус вписанной окружности(13)

Из (13) следует, что

Сторона квадрата равна 48 найдите радиус вписанной окружности(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

Квадрат вписанный в окружность

Видео:Задание 16 Часть 3Скачать

Задание 16  Часть 3

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.
Сторона квадрата равна 48 найдите радиус вписанной окружности

Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

Радиус вписанной окружности в квадрат, если известен периметр:

Радиус вписанной окружности в квадрат, если известна площадь:

Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

Радиус вписанной окружности в квадрат, если известна диагональ:

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

Радиус описанной окружности около квадрата, если известен периметр:

Радиус описанной окружности около квадрата, если известнаплощадь:

Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

Радиус описанной окружности около квадрата, если известнадиагональ:

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известнаплощадь:

Сторона квадрата вписанного в окружность, если известнадиагональ:

Сторона квадрата вписанного в окружность, если известен периметр:

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

Площадь квадрата вписанного в окружность, если известен периметр:

Площадь квадрата вписанного в окружность, если известна диагональ:

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

Периметр квадрата вписанного в окружность, если известна площадь:

Периметр квадрата вписанного в окружность, если известенрадиус вписанной окружности:

Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

Периметр квадрата вписанного в окружность, если известна диагональ:

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

Диагональ квадрата вписанного в окружность, если известна площадь:

Диагональ квадрата вписанного в окружность, если известен периметр:

Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Сторона квадрата равна 48 (см, м, дм), найдите его площадь. Калькулятор онлайн с формулами расчётов.

Введите данные:

Достаточно ввести только одно значение, остальное калькулятор посчитает сам.

Округление:

Cторона, диаметр вписанной окружности (L) = 48

Диагональ, диаметр описанной окружности (M) = (sqrt<2*L^>) = (sqrt<2*48^>) = 67.88

Радиус вписанной окружности (R1) = (frac) = (frac) = 24

Радиус описанной окружности (R2) = (frac) = (frac) = 33.94

Периметр (P) = (L*4) = (48*4) = 192

📹 Видео

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать

Задание 16 ОГЭ по математике. Окружность описана около квадрата

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)
Поделиться или сохранить к себе: