Теорема 1 Любая сторона треугольника меньше суммы двух других сторон.
Доказательство. Рассмотрим произвольный треугольник ABC (Рис.1).
Докажем, что ( small AC lt AB+BC .) На продолжении стороны AB отложим отрезок BD равный стороне BC. Полученный треугольник BCD равнобедренный. тогда ( small angle 1= angle 2.) Рассмотрим треугольник ADC. В этом треугольнике ( small angle ACD gt angle 1 ) и учитывая, что ( small angle 1= angle 2, ) получим ( small angle ACD gt angle 2. ) По теореме 1 статьи Соотношения между сторонами и углами треугольника, против большего угла треугольника лежит большая сторона. Следовательно в треугольнике ADC имеет место неравенство:
. | (1) |
. | (2) |
Тогда из (1) и (2) получим:
Следствие 1. Для любых точек A, B, C, не расположенных на одной прямой справедливы следующие неравенства:
, , . | (3) |
Неравенства (3) называются неравенствами треугольника.
Видео:Неравенства треугольника. 7 класс.Скачать
Неравенство треугольника — определение и вычисление с примерами решения
Содержание:
Неравенство треугольника:
Опыт нам подсказывает, что путь из точки А в точку С по прямой АС короче, чем по ломаной ABC (рис. 255), т. е. АС 12+21 (рис. 258).
Замечание. Из неравенств треугольника следует, что то есть любая сторона треугольника больше разности двух других его сторон. Так, для стороны а справедливо
Пример:
Внутри треугольника ABC взята точка М (рис. 259). Доказать, что периметр треугольника АМС меньше периметра треугольника ABC.
Решение:
Так как у треугольников ABC и АМС сторона АС — общая, то достаточно доказать, что AM + МС B (рис. 108, а).
2) Отложим на стороне АВ отрезок АF, равный стороне AC (рис. 108, б).
3) Так как АF 1.
4) Угол 2 является внешним углом треугольника ВFС, следовательно, 2 > B.
5) Так как треугольник FАС является равнобедренным, то 1 = 2.
Таким образом, BСА > 1, 1 = 2 и 2 > B.
Отсюда получаем, что ВСА > B.
Теорема 2. В треугольнике против большего угла лежит большая сторона.
1) Пусть в треугольнике АBС С > B. Докажем, что АВ > АС (см. рис. 108, а). Доказательство проведем методом от противного.
2) Предположим, что это не так. Тогда: либо АВ = АС, либо АВ C.
В каждом из этих случаев получаем противоречие с условием: C > B. Таким образом, сделанное предположение неверно и, значит, АВ > АС.
Из данной теоремы следует утверждение: в прямоугольном треугольнике катет меньше гипотенузы.
Действительно, гипотенуза лежит против прямого угла, а катет — против острого. Поскольку прямой угол больше острого, то по теореме 2 получаем, что гипотенуза больше катета.
Теорема 3 (признак равнобедренного треугольника). Если два угла треугольника равны, то треугольник равнобедренный.
Пусть в треугольнике два угла равны. Тогда равны стороны, лежащие против этих углов. В самом деле, если предположить, что одна из указанных сторон больше другой, то по теореме 1 угол, лежащий против этой стороны, будет больше угла, лежащего против другой стороны, что противоречит условию равенства углов.
Значит, наше предположение неверно и в треугольнике две стороны равны, т. е. треугольник является равнобедренным.
Неравенство треугольника
Докажем, что длина каждой стороны треугольника меньше суммы длин двух других сторон.
Теорема 4. Длина каждой стороны треугольника меньше суммы длин двух других его сторон.
1) Пусть ABC — произвольный треугольник. Докажем, например, что выполняется неравенство АВ l, следовательно, верно неравенство АВF > 2.
4) Так как в треугольнике против большего угла лежит большая сторона (теорема 2), то АВ
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:✓ Неравенство треугольника | Ботай со мной #126 | Борис ТрушинСкачать
Неравенство треугольника
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
Данный видеоурок предназначен для самостоятельного ознакомления с темой «Неравенство треугольников», которая входит в школьный курс геометрии за седьмой класс. На занятии учитель познакомит с неравенством треугольника, вытекающим из теоремы о сторонах и углах треугольника.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть уроки «Связь числа и геометрии. Часть 2. Треугольники. Координаты», «Основы геометрии»
📺 Видео
7 класс, 34 урок, Неравенство треугольникаСкачать
Неравенство треугольникаСкачать
Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.Скачать
Неравенство треугольникаСкачать
Геометрия 7 класс (Урок№24 - Соотношения между сторонами и углами треугольника. Неравенство треуг.)Скачать
Неравенства треугольника. Практическая часть. 7 класс.Скачать
Неравенства треугольникаСкачать
№ 020 Неравенство треугольника (следствие)Скачать
Неравенство треугольника | Геометрия 7-9 класс #34 | ИнфоурокСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Геометрия 7 класс. Треугольник. Определение, неравенство треугольника. Виды треугольников.Скачать
ТРЕУГОЛЬНИКИ 1. Треугольник. Неравенство треугольника. Периметр треугольникаСкачать
ГЕОМЕТРИЯ 7 класс : Неравенство треугольника | ВидеоурокСкачать
неравенство треугольникаСкачать
Неравенство треугольникаСкачать
28012014 Неравенства треугольникаСкачать
Неравенство треугольника ★ Любая сторона треугольника меньше суммы двух других сторонСкачать
неравенство треугольника #SHORTSСкачать