- Как сделать треугольный модуль их листа квадрата пошагово с фото
- Двойной треугольный модуль из бумаги. Мастер-класс с пошаговыми фото
- Схема сборки
- Разрезание Дьюдени — неразрывная цепочка разрезания
- Изначально задача о разрезании треугольника была предложена Генри Дьюдени в виде головоломки и опубликована в газете «Дейли мейл» (выпуски от 1 и 8 февраля 1905 г.). Позже эта головоломка вошла в книгу «Кентерберийские головоломки» и по сей день входит в сотню лучших головоломок «всех времен».
- Пирамида из бумаги своими руками. Схемы и способы изготовления
- Как сделать объемные геометрические фигуры
- Из бумаги
- Из картона
- Развертки куба
- Треугольника
- Прямоугольника
- Цилиндра
- Ромба
- Призмы
- Задание 2 (построение прямоугольного треугольника)
- Схемы для вырезания
- Конуса
- Пирамиды
- Шестигранника
- Макета с припусками
- Параллелепипеда
- Трапеции
- Овала
- Многогранника
- Параллелограмма
- Задание 1 (определение вида треугольников)
- Шаблоны для склеивания
- Сложных фигур
- Октаэдра
- Тетраэдра
- Икосаэдра
- Додекаэдра
- Гексаэдра
- Фигурок из треугольников
- Виды углов
- Макеты из бумаги
- Оригами
- Животные
- Корабль
- Полигональные чертежи
- Игрушки из фигур
- Геометрические маски
- Карандаш
- 📸 Видео
Видео:Как сделать конверт - треугольник из бумаги. Письмо солдату своими руками.Скачать
Как сделать треугольный модуль их листа квадрата пошагово с фото
Двойной треугольный модуль из бумаги. Мастер-класс с пошаговыми фото
Данная схема сборки треугольного модуля применима только в том случае, если в качестве основы для изготовления модуля вы используете квадратные листочки бумаги. Во всех остальных случаях, нужно использовать классическую схему сборки треугольного модуля.
В моём случае, я использую квадрат размером 10 см x 10 см, но и для квадрата другого размера эта схема применима.
Схема сборки
1. Размещаем квадратный лист бумаги на ровную поверхность.
2. Складываем квадрат по диагонали.
3. Правый угол получившегося треугольника совместим с верхним углом и выполняем сгиб.
4. Аналогично согните и левый угол.
5. Переворачиваем полученную заготовку нижней стороной к себе.
6. Загибаем верхний угол вниз, как показано на фото.
7. Загибаем свободные концы вниз, как показано на фото.
8. Сгибаем готовый модуль, совместив верхние углы получившегося треугольника.
Эти модули можно использовать как для небольших фигурок, так и для отдельных частей фигурок из простых треугольных модулей.
Совет. Двойной треугольный модуль складывать не сложнее, чем простой треугольный модуль. Но при складывании нужно быть очень аккуратным: если допущен перекос, модули будет трудно соединить.
Из таких голубых модулей можно собрать Кита.
Видео:Как из бумажного квадрата сделать равносторонний треугольник?Скачать
Разрезание Дьюдени — неразрывная цепочка разрезания
Можно ли разрезать треугольник на такое количество частей, чтобы из них можно было сложить квадрат?
Утвердительный ответ на этот вопрос был дан еще в 1807 году. В более общем виде это звучало так: «Любые два многоугольника общей площади должны иметь общее разрезание». Это теорема Бойля –Гервина, доказанная в 1807. Е сли у нас есть треугольник и квадрат и мы знаем, что их площади одинаковы, разрезав треугольник на несколько многоугольников, мы можем как из мозаики сложить квадрат.
Но вот более сложный вопрос. А можно ли разрезать так, чтобы все части оставались соединенными в неразрывную цепочку?
Шарнирное разрезание или разрезания Дью-дени (по имени автора), выполненное в виде анимации, демонстрирует нам как треугольник преобразуется в квадрат, а затем в шестиугольник и обратно в треугольник (использован анимационный ролик из Wikipedia).
Видео:Конверт треугольник как сделать. Военный конверт.Скачать
Изначально задача о разрезании треугольника была предложена Генри Дьюдени в виде головоломки и опубликована в газете «Дейли мейл» (выпуски от 1 и 8 февраля 1905 г.). Позже эта головоломка вошла в книгу «Кентерберийские головоломки» и по сей день входит в сотню лучших головоломок «всех времен».
В переведенном издании (Дьюдени Г. Э. Кентерберийские головоломки / Перевод с английского Ю. Н. Сударева. — М.: Мир, 1979. — С. 46—47.) исходный текст звучит следующим образом:
Видео:Геометрия - Построение правильного треугольникаСкачать
Пирамида из бумаги своими руками. Схемы и способы изготовления
Видео:Пирамида из бумаги/Paper pyramid/DIYСкачать
Как сделать объемные геометрические фигуры
Дети познают мир в процессе игры и творчества. Трехмерные фигуры, выполненные своими руками, помогут познакомиться с удивительной наукой — геометрией.
Примеры трафаретов и шаблонов можно скачать из Интернета и распечатать. Затем все фигуры вырезают и склеивают. Дети старшего возраста могут самостоятельно нарисовать развертку нужной фигуры, малышам помогают родители,.
Геометрические объекты делают из бумаги (белой или цветной), картона. Из последнего материала они получаются плотными и прочными.
Из бумаги
к оглавлению ^
Из картона
к оглавлению ^
Развертки куба
Треугольника
Прямоугольника
Цилиндра
к оглавлению ^
Ромба
к оглавлению ^
Призмы
Видео:Пэчворк для начинающих.6 способов сшить блок "Квадрат из 2 треугольников". HST быстрым способом.Скачать
Задание 2 (построение прямоугольного треугольника)
Постройте на нелинованной бумаге треугольник , чтобы угол был прямым, длина стороны равнялась 15 см, а длина сторогы – 20 см.
Построим точку (Рис. 18).
Проведем через точку прямую (Рис. 19).
Рис. 19. Прямая, проведенная через точку
Для построения прямого угла воспользуемся прямоугольным треугольником. Приложим треугольник так, чтобы вершина прямого угла совпала с точкой , а одна из сторон совпала с лучом, как показано на рис. 20.
Рис. 20. Построение прямого угла
Проведем по второй стороне прямого угла треугольника луч из точки и получим прямой угол (Рис. 21).
Рис. 21. Полученный прямой угол
Выполним построение сторон треугольника. Построим отрезок , который равен 15 см (Рис. 22).
Построим отрезок , который равен 20 см (Рис. 23).
Соединим полученные точки отрезком . Мы получили прямоугольный треугольник (Рис. 24) с прямым углом и сторонами см и см.
Рис. 24. Треугольник
Видео:оригами пирамида как сделать пирамиду из бумаги схема пирамида хеопса How to make Paper PyramidСкачать
Схемы для вырезания
Ученикам 1–2 класса демонстрируют в школе простые геометрические фигуры и 3d: квадрат, кубик, прямоугольник. Их несложно вырезать и склеить. Шаблоны развивают мелкую моторику у детей и дают первые представления о геометрии.
Ученики средней школы, которые изучают черчение, делают сложные фигуры: бумажные шестигранники, фигуры из пятиугольников, цилиндры. Из бумаги для детей выполняют домики для кукол, мебель, оригами, замок для маленьких игрушек, маски на лицо (трехмерные называются полигональными).
Конуса
Пирамиды
Шестигранника
Макета с припусками
к оглавлению ^
Параллелепипеда
Трапеции
Овала
к оглавлению ^
Материал, из чего можно сделать плотный шар — картон или плотная бумага.
Многогранника
Параллелограмма
к оглавлению ^
Видео:Как красиво защипнуть края треугольникаСкачать
Задание 1 (определение вида треугольников)
Назовите номера тупоугольных, остроугольных и прямоугольных треугольников на рисунке 16.
Рис. 16. Иллюстрация к заданию 1
Треугольник номер 1 – остроугольный, у него все углы острые. Треугольники номер 3 и 4 – тупоугольные, каждый из них имеет один тупой угол. Фигура номер 2 – прямоугольный треугольник. Проверим, действительно ли эта фигура имеет прямой угол, с помощью прямоугольного треугольника (Рис. 17).
Рис. 17. Проверка треугольника номер 2
Мы видим, что вершины и стороны прямого угла совпали, значит, угол прямой, а треугольник прямоугольный.
Видео:Как сложить доллар треугольником. Магия денег. Привлекаем деньги. Видео ютуб. Канал ТУТСИ.Скачать
Шаблоны для склеивания
Зачастую школьники задаются вопросом, что можно сделать из бумаги к урокам труда или на выставку. Работы ученика выделятся среди остальных, если это будут сложные трехмерные предметы, рельефные геометрические фигуры, платоновы тела, шаблоны кристаллов и минералов.
Если следовать инструкции, то ученик 5–6 класса сможет без помощи родителей сделать точный додекаэдр или тетраэдр.
Иногда в школе задают логические задания, как из квадрата сделать круг или шестиугольник. Для этого определить центр квадрата, согнув его по диагонали. Точка пересечения прямых — центр квадрата и будущего круга. Исходя из этого, можно начертить круг.
Сложных фигур
к оглавлению ^
к оглавлению ^
Октаэдра
Тетраэдра
Икосаэдра
Додекаэдра
Гексаэдра
к оглавлению ^
Фигурок из треугольников
к оглавлению ^
Видео:Геометрические фигуры на HTML и CSS // Треугольник стрелка круг трапеция и другиеСкачать
Виды углов
Развернутый угол. (Рис. 4)
Угол называется развернутым, если его стороны лежат на одной прямой.
Рис. 4. Виды углов: развернутый
Прямой угол (Рис. 5)
Прямой угол составляет половину развернутого.
Рис. 5. Виды углов: прямой угол
Прямой угол можно получить путем складывания бумаги. Сложив лист дважды, мы получим модель прямого угла, его составляют линии сгиба.
Приложим модель угла к углу на чертеже (Рис. 5) таким образом, чтобы углы и стороны совпали (Рис. 6).
Рис. 5. Модель угла и угол на чертеже | Рис. 6. Модель угла, приложенная к углу на чертеже |
Мы убедились, что на чертеже действительно изображен прямой угол.
Для удобства определения, прямой угол или нет, используют особый инструмент – прямоугольный треугольник (Рис. 7).
Рис. 7. Прямоугольный треугольник
Непрямые углы делятся на острые (Рис. и тупые (Рис. 11).
Рис. 8. Виды углов: острый угол Острый угол меньше прямого (Рис. 10). |
Рис. 10. Сравнение острого и прямого угла
Тупой угол больше прямого (Рис. 12).
Рис. 12. Сравнение тупого и прямого угла
Видео:Построение равностронего треугольника.Скачать
Макеты из бумаги
Макетирование — увлекательное занятие. Оно помогает развить воображение и логическое мышление. Из бумаги делают не только фигуры, но и необычные скульптуры, статуэтки, шестиугольные–двенадцатиугольные предметы, наклонные объекты (например, Пизанскую башню), карандаши, линейки. На фото и картинках можно посмотреть, как выглядят оригинальные поделки из бумаги.
Школьники младших классов или дошколята делают бумажные объемные поделки. Например, предметы из овала — веер, цветы, гусеницы. Для них потребуются овалы и круги разного диаметра. Раскладки склеиваются между собой, получаются трехмерные игрушки.
Оригами
к оглавлению ^
Животные
к оглавлению ^
Корабль
Применяется множество вариантов, как сделать кораблик из бумаги.
к оглавлению ^
Полигональные чертежи
к оглавлению ^
Игрушки из фигур
к оглавлению ^
Геометрические маски
Карандаш
к оглавлению ^
📸 Видео
3 способа - блок Квадрат из двух Треугольников / HST - см и дюймыСкачать
Как сделать двойной треугольник. Оригами. Базовые формы.Скачать
Короткие загадки, которые осилит не каждый профессорСкачать
КАК СДЕЛАТЬ ТРЕУГОЛЬНИК 3D ОРИГАМИ | ОБЪЕМНЫЙ ТРЕУГОЛЬНИК | КОРОБОЧКА ОРИГАМИСкачать
МАСТЕР КЛАСС Вязание Половинка бабушкиного квадрата Бабушкин треугольник Cвяжем и соединим в изделиеСкачать
Как сделать ЧЕТЫРЕХУГОЛЬНУЮ ПИРАМИДУ из бумаги? ||| Геометрические фигуры своими рукамиСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемыСкачать
Как поделить окружность на 3 равные части. Очень просто. Уроки черчения.Скачать