Сколько параллелограммов образуют параллельные прямые

Параллелограмм: свойства и признаки

Сколько параллелограммов образуют параллельные прямые

О чем эта статья:

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Сколько параллелограммов образуют параллельные прямые
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Сколько параллелограммов образуют параллельные прямые
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Сколько параллелограммов образуют параллельные прямые

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Сколько параллелограммов образуют параллельные прямые
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Сколько параллелограммов образуют параллельные прямые
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Сколько параллелограммов образуют параллельные прямые
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Сколько параллелограммов образуют параллельные прямые
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Сколько параллелограммов образуют параллельные прямые
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Сколько параллелограммов образуют параллельные прямые

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Сколько параллелограммов образуют параллельные прямые

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Сколько параллелограммов образуют параллельные прямые

Теорема доказана. Наше предположение верно.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Сколько параллелограммов образуют параллельные прямые

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Сколько параллелограммов образуют параллельные прямые

Шаг 3. Из равенства треугольников также следует:

Сколько параллелограммов образуют параллельные прямые

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Сколько параллелограммов образуют параллельные прямые

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Сколько параллелограммов образуют параллельные прямые

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Сколько параллелограммов образуют параллельные прямые

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:Пары углов в геометрииСкачать

Пары углов в геометрии

1/16 финала. Вариант 3 (8)

Задачи боя Школа №86 — Гимназия №1

3 ноября 2000 года

На плоскости n параллельных прямых пересекаются серией из m параллельных прямых. Сколько параллелограммов можно выделить в образовавшейся сетке?

Каждый параллелограмм определяется выбором двух прямых первой серии, что можно сделать Сколько параллелограммов образуют параллельные прямыеспособами, и двух прямых второй серии, что можно сделать Сколько параллелограммов образуют параллельные прямыеспособами. Таким образом, общее число параллелограммов равно

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллелограмм. Свойства и признаки параллелограмма

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Определение параллелограмма

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Сколько параллелограммов образуют параллельные прямые

Видео:Параллельные прямые циркулемСкачать

Параллельные прямые циркулем

Свойства параллелограмма

Сколько параллелограммов образуют параллельные прямые

1. Противоположные стороны параллелограмма попарно равны

2. Противоположные углы параллелограмма попарно равны

Сколько параллелограммов образуют параллельные прямые

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

Сколько параллелограммов образуют параллельные прямые 5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

Сколько параллелограммов образуют параллельные прямые

6. Точка пересечения диагоналей является центром симметрии параллелограмма

Сколько параллелограммов образуют параллельные прямые

7. Диагонали Сколько параллелограммов образуют параллельные прямыепараллелограмма и стороны
Сколько параллелограммов образуют параллельные прямыесвязаны следующим соотношением: Сколько параллелограммов образуют параллельные прямые

Сколько параллелограммов образуют параллельные прямые

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Признаки параллелограмма

Четырехугольник Сколько параллелограммов образуют параллельные прямыеявляется параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны: Сколько параллелограммов образуют параллельные прямые

2. Противоположные углы попарно равны: Сколько параллелограммов образуют параллельные прямые

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны: Сколько параллелограммов образуют параллельные прямые

5. Сколько параллелограммов образуют параллельные прямые

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:

Сколько параллелограммов образуют параллельные прямыеФормулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

💥 Видео

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Параллелограмм и вся его семейкаСкачать

Параллелограмм и вся его семейка

Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)Скачать

Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Параллелограмм. Свойства. Периметр.Скачать

Параллелограмм. Свойства. Периметр.

8 класс, 5 урок, Признаки параллелограммаСкачать

8 класс, 5 урок, Признаки параллелограмма

Биссектриса параллелограммаСкачать

Биссектриса параллелограмма

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Геометрия. 8 класс. Урок 1 ПараллелограммСкачать

Геометрия. 8 класс. Урок 1 Параллелограмм

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

Геометрия 8 класс (Урок№2 - Параллелограмм.)Скачать

Геометрия 8 класс (Урок№2 - Параллелограмм.)
Поделиться или сохранить к себе: