Sin 11п 2 на окружности

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
SIN α (СИНУС)01/2 2/23 /210-10

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусахSin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10°0.1736
11°0.1908
12°0.2079
13°0.225
14°0.2419
15°0.2588
16°0.2756
17°0.2924
18°0.309
19°0.3256
20°0.342
21°0.3584
22°0.3746
23°0.3907
24°0.4067
25°0.4226
26°0.4384
27°0.454
28°0.4695
29°0.4848
30°0.5
31°0.515
32°0.5299
33°0.5446
34°0.5592
35°0.5736
36°0.5878
37°0.6018
38°0.6157
39°0.6293
40°0.6428
41°0.6561
42°0.6691
43°0.682
44°0.6947
45°0.7071
46°0.7193
47°0.7314
48°0.7431
49°0.7547
50°0.766
51°0.7771
52°0.788
53°0.7986
54°0.809
55°0.8192
56°0.829
57°0.8387
58°0.848
59°0.8572
60°0.866
61°0.8746
62°0.8829
63°0.891
64°0.8988
65°0.9063
66°0.9135
67°0.9205
68°0.9272
69°0.9336
70°0.9397
71°0.9455
72°0.9511
73°0.9563
74°0.9613
75°0.9659
76°0.9703
77°0.9744
78°0.9781
79°0.9816
80°0.9848
81°0.9877
82°0.9903
83°0.9925
84°0.9945
85°0.9962
86°0.9976
87°0.9986
88°0.9994
89°0.9998
90°1

Полная таблица синусов для углов от 91° до 180°

Угол в градусахSin (Синус)
91°0.9998
92°0.9994
93°0.9986
94°0.9976
95°0.9962
96°0.9945
97°0.9925
98°0.9903
99°0.9877
100°0.9848
101°0.9816
102°0.9781
103°0.9744
104°0.9703
105°0.9659
106°0.9613
107°0.9563
108°0.9511
109°0.9455
110°0.9397
111°0.9336
112°0.9272
113°0.9205
114°0.9135
115°0.9063
116°0.8988
117°0.891
118°0.8829
119°0.8746
120°0.866
121°0.8572
122°0.848
123°0.8387
124°0.829
125°0.8192
126°0.809
127°0.7986
128°0.788
129°0.7771
130°0.766
131°0.7547
132°0.7431
133°0.7314
134°0.7193
135°0.7071
136°0.6947
137°0.682
138°0.6691
139°0.6561
140°0.6428
141°0.6293
142°0.6157
143°0.6018
144°0.5878
145°0.5736
146°0.5592
147°0.5446
148°0.5299
149°0.515
150°0.5
151°0.4848
152°0.4695
153°0.454
154°0.4384
155°0.4226
156°0.4067
157°0.3907
158°0.3746
159°0.3584
160°0.342
161°0.3256
162°0.309
163°0.2924
164°0.2756
165°0.2588
166°0.2419
167°0.225
168°0.2079
169°0.1908
170°0.1736
171°0.1564
172°0.1392
173°0.1219
174°0.1045
175°0.0872
176°0.0698
177°0.0523
178°0.0349
179°0.0175
180°0

Таблица синусов для углов 181° — 270°

УголSin (Синус)
181°-0.0175
182°-0.0349
183°-0.0523
184°-0.0698
185°-0.0872
186°-0.1045
187°-0.1219
188°-0.1392
189°-0.1564
190°-0.1736
191°-0.1908
192°-0.2079
193°-0.225
194°-0.2419
195°-0.2588
196°-0.2756
197°-0.2924
198°-0.309
199°-0.3256
200°-0.342
201°-0.3584
202°-0.3746
203°-0.3907
204°-0.4067
205°-0.4226
206°-0.4384
207°-0.454
208°-0.4695
209°-0.4848
210°-0.5
211°-0.515
212°-0.5299
213°-0.5446
214°-0.5592
215°-0.5736
216°-0.5878
217°-0.6018
218°-0.6157
219°-0.6293
220°-0.6428
221°-0.6561
222°-0.6691
223°-0.682
224°-0.6947
225°-0.7071
226°-0.7193
227°-0.7314
228°-0.7431
229°-0.7547
230°-0.766
231°-0.7771
232°-0.788
233°-0.7986
234°-0.809
235°-0.8192
236°-0.829
237°-0.8387
238°-0.848
239°-0.8572
240°-0.866
241°-0.8746
242°-0.8829
243°-0.891
244°-0.8988
245°-0.9063
246°-0.9135
247°-0.9205
248°-0.9272
249°-0.9336
250°-0.9397
251°-0.9455
252°-0.9511
253°-0.9563
254°-0.9613
255°-0.9659
256°-0.9703
257°-0.9744
258°-0.9781
259°-0.9816
260°-0.9848
261°-0.9877
262°-0.9903
263°-0.9925
264°-0.9945
265°-0.9962
266°-0.9976
267°-0.9986
268°-0.9994
269°-0.9998
270°-1

Таблица синусов для углов от 271° до 360°

УголSin (Синус)
271°-0.9998
272°-0.9994
273°-0.9986
274°-0.9976
275°-0.9962
276°-0.9945
277°-0.9925
278°-0.9903
279°-0.9877
280°-0.9848
281°-0.9816
282°-0.9781
283°-0.9744
284°-0.9703
285°-0.9659
286°-0.9613
287°-0.9563
288°-0.9511
289°-0.9455
290°-0.9397
291°-0.9336
292°-0.9272
293°-0.9205
294°-0.9135
295°-0.9063
296°-0.8988
297°-0.891
298°-0.8829
299°-0.8746
300°-0.866
301°-0.8572
302°-0.848
303°-0.8387
304°-0.829
305°-0.8192
306°-0.809
307°-0.7986
308°-0.788
309°-0.7771
310°-0.766
311°-0.7547
312°-0.7431
313°-0.7314
314°-0.7193
315°-0.7071
316°-0.6947
317°-0.682
318°-0.6691
319°-0.6561
320°-0.6428
321°-0.6293
322°-0.6157
323°-0.6018
324°-0.5878
325°-0.5736
326°-0.5592
327°-0.5446
328°-0.5299
329°-0.515
330°-0.5
331°-0.4848
332°-0.4695
333°-0.454
334°-0.4384
335°-0.4226
336°-0.4067
337°-0.3907
338°-0.3746
339°-0.3584
340°-0.342
341°-0.3256
342°-0.309
343°-0.2924
344°-0.2756
345°-0.2588
346°-0.2419
347°-0.225
348°-0.2079
349°-0.1908
350°-0.1736
351°-0.1564
352°-0.1392
353°-0.1219
354°-0.1045
355°-0.0872
356°-0.0698
357°-0.0523
358°-0.0349
359°-0.0175
360°0

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

Видео:Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctgСкачать

Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctg

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Sin 11п 2 на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Тригонометрический круг со всеми значениями, круг синусов и косинусов, линия, ось тангенса на окружности, как пользоваться и находить точки

    В каждой профессии существуют свои инструменты, обеспечивающие решение и качественное выполнение определенных задач. Математики применяют тригонометрический круг, позволяющий легко и быстро вычислить значение какой-либо функции. Однако не все могут им правильно пользоваться, поскольку не понимают основных понятий.

    Sin 11п 2 на окружности

    Видео:Вычисление значений тригонометрических функцийСкачать

    Вычисление значений тригонометрических функций

    Общие сведения

    Sin 11п 2 на окружности

    Для правильного решения тригонометрических задач следует изучить основные понятия, формулы, а также методы нахождения основных величин. Раздел математики, изучающий функции косинуса, синуса, тангенса, котангенса, арксинуса, арккосинуса, арктангенса и арккотангенса, называется тригонометрией. Окружность, которая используется для решения геометрических задач на плоскости, имеет единичный радиус.

    Значения функций, которые можно по ней находить, называются тригонометрическими. Однако существует множество способов нахождения их значений, но в некоторых ситуациях при использовании формул приведения решение затянется на продолжительное время, а вычисления будут громоздкими. Чтобы этого избежать, нужно использовать тригонометрический круг со всеми значениями. С его помощью также можно определить, является ли функция четной или нечетной.

    Углы и их классификация

    Перед тем как понять основное назначение тригонометрических функций, следует обратить внимание на классификацию углов. Она является важной для вычисления тригонометрических выражений. Углы в математических дисциплинах делятся на следующие типы:

    Sin 11п 2 на окружности

    К первому типу относятся углы любой размерности градусной единицы измерения, которая не превышает 90 (а Информация о функциях

    Тригонометрических функций всего четыре вида: синус (sin), косинус (cos), тангенс (tg) и котангенс (ctg). Существует столько же типов обратных функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg). Они получили широкое применение не только в математических задачах, но также используются в физике, электронике, электротехнике и других дисциплинах. Основной их особенностью считается возможность представления какого-либо закона.

    Sin 11п 2 на окружности

    Например, зависимость амплитуды напряжения переменного тока от времени описывается следующим законом: u = Um * cos (w*t) (графиком является косинусоида). Гармонические звуковые колебания также подчиняются определенному закону, в котором присутствует тригонометрическая функция. Кроме того, можно находить значения корня тригонометрического уравнения.

    Синусом угла называется величина, равная отношению противолежащего катета прямоугольного треугольника к его гипотенузе. Следовательно, косинус — отношение прилежащего катета к гипотенузе. Тангенс — отношение величины противолежащего катета к прилежащему. Котангенс является обратной функцией тангенсу, т. е. отношение прилежащего к противолежащему.

    Функции arcsin, arccos, arctg, arcctg применяются в том случае, когда нужно найти значение угла в градусах или радианах. Вычисления выполняются по специальным таблицам Брадиса или с помощью программ. Также можно использовать тригонометрическую окружность.

    Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

    Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

    Тригонометрический круг

    Чтобы воспользоваться тригонометрической окружностью для решения задач, нужны такие базовые знания: понятие о синусе, косинусе, тангенсе, котангенсе, системе координат и теореме Пифагора. Для построения единичной окружности используется декартовая система координат с двумя осями. Точка «О» — центр пересечения координатных осей, ОХ — ось абсцисс, ОУ — ординат.

    Для решения задач различного типа применяется и теорема Пифагора. Она справедлива только для прямоугольного треугольника (один из углов — прямой). Ее формулировка следующая: квадрат гипотенузы в произвольном прямоугольном треугольнике равен сумме квадратов катетов. Следует также знать основные соотношения между функциями острых углов в заданном прямоугольном треугольнике:

    Sin 11п 2 на окружности

    • a + b = 180.
    • cos(a) = sin(b).
    • cos(b) = sin(a).
    • tg(a) = ctg(b).
    • tg(b) = ctg(a).
    • tg(a) = 1 / ctg(a).
    • tg(b) = 1 / ctg(b).

    Существуют и другие тригонометрические тождества, но для работы с кругом этого перечня будет достаточно.

    Построение «инструмента»

    Sin 11п 2 на окружности

    Построить окружность, которая ускорит процесс решения задач, довольно просто. Для этого потребуются бумага, карандаш, резинка и циркуль. Далее необходимо нарисовать любую немаленькую окружность. После этого отметить ее центр карандашом, поставив точку. Пусть она будет называться «О». Через эту точку следует провести две перпендикулярные прямые (угол пересечения равен 90 градусам). Обозначить их следующим образом: «х» (горизонтальная) и «у» (вертикальная).

    Окружность является единичной, но не стоит рисовать ее такой, поскольку работать будет неудобно. Этот прием называется масштабированием. Он широко применяется практически во всех сферах человеческой деятельности. Например, инженеры не чертят двигатель космического корабля в натуральную величину, поскольку с таким «рисунком» будет неудобно и невозможно работать. Они используют его макет.

    Окружность пересекается с осями декартовой системы координат в 4 точках со следующими координатами: (1;0), (0;1), (-1;0) и (0;-1). Области, которые делят декартовую систему координат на 4 части, называются четвертями. Их четыре:

    • Первая состоит из положительных координат по х и у.
    • Вторая имеет по х отрицательные и положительные по у.
    • Третья — только отрицательные значения.
    • Четвертая — положительные значения по х и отрицательные по у.

    Исходя из этих особенностей, определяется числовой знак функции, позволяющий определить ее четность и нечетность. Кроме того, на ней следует отметить углы следующим образом: 0 и 2ПИ соответствует точке с координатами (1;0), ПИ/2 — (0;1), ПИ — (-1;0) и 3ПИ/2 — (0;-1).

    Готовый макет

    Для решения задач специалисты рекомендуют иметь рабочий и готовый макеты тригонометрических окружностей. Первый применяется для нахождения значений нестандартных углов (например, синуса 185 градусов). Тригонометрическим кругом (рис. 1) удобно пользоваться в том случае, когда значение угла является стандартным (90, 60 и т. д.).

    Sin 11п 2 на окружности

    Рисунок 1. Готовый макет тригонометрического круга синусов и косинусов.

    Для нахождения необходимых значений объединяют две фигуры — единичную окружность и прямоугольный треугольник. Гипотенуза последнего равна 1 и соответствует радиусу окружности. Ось ОХ — косинусы, ОУ — синусы. С помощью этого «инструмента» определение синусов и косинусов становится намного проще. Для нахождения значения sin(30) необходимо воспользоваться следующим алгоритмом:

    • Отметить угол на окружности и достроить его до прямоугольного треугольника.
    • Если катет лежит напротив угла в 30 градусов, то он равен 0,5 от длины гипотенузы.
    • sin(30) = 1 * 0,5 = 0,5.

    Sin 11п 2 на окружности

    Для нахождения косинуса необходимо использовать основное тригонометрическое тождество, которое связывает sin и cos: (sin(a))^2 + (cos(a))^2 = 1. Из равенства величина cos(30) = sqrt[1 — (sin(30))^2]= sqrt[1 — 0,5^2] = sqrt(3) / 2.

    Однако после всех вычислений следует выбрать знак функции. В данном случае угол находится в первой четверти. Следовательно, функция имеет положительный знак. Для нахождения тангенса и котангенса можно воспользоваться следующими формулами: tg(a) = sin(a) / cos(a) и ctg(a) = cos(a) / sin(a). Подставив значения синуса и косинуса, можно определить значение tg: tg(30) = 0,5 / (sqrt(3) / 2) = 1 / sqrt(3) = sqrt(3) / 3. Тогда котангенс можно найти двумя способами:

    • Через известный тангенс: ctg(30) = 1 / (1 / sqrt(3)) = sqrt(3).
    • Использовать основное отношение: ctg(30) = (sqrt(3) / 2) / (1/2) = sqrt(3).

    Вычислить значения синуса и косинуса для угла 60 градусов очень просто. Для этого нужно воспользоваться основными тождествами: sin(60) = сos(30) = sqrt(3) / 2, cos(60) = sin(30) = 1/2, tg(30) = ctg(60) = sqrt(3) / 3, tg(60) = ctg(30) = sqrt(3). Значения для 45 градусов определяются следующим образом:

    • Прямоугольный треугольник с углом 45 градусов является равносторонним (катеты равны).
    • (sin(45))^2 + (cos(45))^2 = 1.
    • 2 * (sin(45))^2 = 1.
    • sin(45) + cos(45) = sqrt(2) / 2.

    Тангенс и котангенс равен 1. Если угол равен 90, то необходимо внимательно посмотреть на рисунок 1. Следовательно, sin(90) = 1, cos(90) = 0, tg(90) = 1 и ctg(90) не существует. Линия тангенса на окружности не отображается. В этом случае нужно пользоваться основными тригонометрическими тождествами.

    Правила использования

    Инструмент позволяет легко и быстро находить значения тригонометрических функций любых углов. Если при решении задачи требуется найти sin(270), то нужно выполнить простые действия:

    • Пройти против часовой стрелки (положительное направление) 180 градусов, а затем еще 90.
    • На оси синусов значение составляет -1 (точка лежит на оси).

    Sin 11п 2 на окружности

    Существуют задачи, в которых угол представлен отрицательным значением. Например, нужно определить синус, косинус, тангенс и котангенс угла (-7ПИ/6). В некоторых случаях заданное значение следует перевести в градусы: -7ПИ/6 = -210 (градусам). Если в условии отрицательный угол, то движение следует осуществлять по часовой стрелке от нулевого значения (пройти полкруга, а затем еще 30). Можно сделать вывод о том, что значение -210 соответствует 30. Следовательно, синус вычисляется следующим образом: sin(-210) = -(sin(ПИ + 30)) = — 1/2, cos(-210) = sqrt(3)/2, tg(-210) = sqrt(3)/3 и ctg(-210) = sqrt(3).

    Пример случая, когда нет необходимости переводить радианы в градусы, является следующим: нужно вычислить значения тригонометрических функций угла 5ПИ/4. Необходимо расписать значение угла таким образом: 5ПИ/4 = ПИ + ПИ/4. Против часовой стрелки следует пройти половину круга (ПИ), а затем его четвертую часть (ПИ/4). Далее нужно спроецировать координаты точки на ось синусов и косинусов. Это соответствует значению sqrt(2)/2. Тангенс и котангенс заданного угла будут равны 1.

    Встречаются задачи, в которых значение угла превышает 360 градусов. Например, требуется найти значения тригонометрических функций угла (-25ПИ/6). Для решения необходимо разложить угол следующим образом: (-25ПИ/6) = — (4ПИ + ПИ/6). Можно не делать обороты, поскольку 4ПИ соответствует двойному обороту и возврату в точку (-ПИ/6). Это объясняется периодом функций синуса и косинуса, который равен 2ПИ. Значения функций sin, сos, tg и ctg равны следующим значениям: — 1/2, sqrt(3)/2, sqrt(3)/3 и sqrt(3) соответственно.

    Таким образом, тригонометрический круг позволяет оптимизировать вычисления в дисциплинах с физико-математическим уклоном, в которых используются тригонометрические функции. Не имеет смысла устанавливать дополнительное программное обеспечение, пользоваться таблицами, поскольку это занимает некоторое время. При помощи этого «универсального инструмента» можно найти значение любого угла.

    🎥 Видео

    Тригонометрическая окружность для непонимающихСкачать

    Тригонометрическая окружность для непонимающих

    Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать

    Задание №13. Как отбирать корни в тригонометрической окружности? 🤔

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    ОГЭ номер 11 найти а по графику функции y=ax^2+bx+c парабола РешуОГЭ 193099, дистанционный урокСкачать

    ОГЭ номер 11 найти а по графику функции y=ax^2+bx+c парабола РешуОГЭ 193099, дистанционный урок

    Find the exact value of sin 11π/12.Скачать

    Find the exact value of sin 11π/12.

    Знаки синуса, косинуса, тангенса ЛекцияСкачать

    Знаки синуса, косинуса, тангенса Лекция

    Супер ЖЕСТЬ для продвинутых: sqrt(2+sqrt(2-sqrt(2+x)))=xСкачать

    Супер ЖЕСТЬ для продвинутых: sqrt(2+sqrt(2-sqrt(2+x)))=x

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    М11 (П1-П2) Повторение. Тригонометрия. Определить знак выражения.Скачать

    М11 (П1-П2) Повторение. Тригонометрия. Определить знак выражения.

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

    Область определения тригонометрических функцийСкачать

    Область определения тригонометрических функций

    Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

    Математика без Ху!ни. Кривые второго порядка. Эллипс.

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

    ТРИГОНОМЕТРИЯ с нуля за 30 минут

    Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

    Математика| Преобразование тригонометрических выражений. Формулы и задачи
    Поделиться или сохранить к себе: