О чем эта статья:
- Что такое симметрия
- Осевая симметрия
- Центральная симметрия
- Задачи на самопроверку
- Презентация по геометрии » Симметрия относительно плоскости»
- Описание презентации по отдельным слайдам:
- Симметрия фигур в пространстве
- Центральная симметрия
- Симметрия относительно плоскости
- Симметрия относительно оси. Ось симметрии второго порядка.
- Зависимость между различными видами симметрии в пространстве.
- Оси симметрии высших порядков
- Симметрия куба.
- 🎦 Видео
Видео:Видеоурок "Симметрия относительно плоскости"Скачать
Что такое симметрия
Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.
Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.
Центр симметрии — это точка, в которой пересекаются все оси симметрии.
Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.
Рассмотрите фигуры с осевой и центральной симметрией.
- Ось симметрии угла — биссектриса.
- Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
- Оси симметрии прямоугольника проходят через середины его сторон.
- У ромба две оси симметрии — прямые, содержащие его диагонали.
- У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
- Ось симметрии окружности — любая прямая, проведенная через ее центр.
Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.
Видео:ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.Скачать
Осевая симметрия
Вот как звучит определение осевой симметрии:
Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.
При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.
Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.
В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.
Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.
Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.
- Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
- Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
- С другой стороны прямой отложим такие же расстояния.
- Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
- Получаем два треугольника, симметричных относительно оси симметрии.
Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.
- Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
- Измеряем расстояние от вершин до точек на прямой.
- Откладываем такие же расстояния на другой стороне оси симметрии.
- Соединяем точки и строим треугольник A1B1C1.
Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.
- Проводим через точку А прямую, перпендикулярную прямой l.
- Проводим через точку В прямую, перпендикулярную прямой l.
- Измеряем расстояния от точек А и В до прямой l.
- Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
- Соединяем точки A1 и B1.
Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!
Видео:Осевая симметрия. 6 класс.Скачать
Центральная симметрия
Теперь поговорим о центральной симметрии — вот ее определение:
Центральной симметрией называется симметрия относительно точки.
Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.
Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.
Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).
- Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
- Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
- Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
- Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.
Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).
- Измеряем расстояние от точки B до точки О и от точки А до точки О.
- Проводим прямую из точки А через точку О и выводим ее на другую сторону.
- Проводим прямую из точки B через точку О и выводим ее на другую сторону.
- Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
- Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.
Видео:Симметрия относительно точки (центральная симметрия). Пример 2Скачать
Задачи на самопроверку
В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!
Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.
Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:
Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная
Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.
Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.
Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.
Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать
Презентация по геометрии » Симметрия относительно плоскости»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
«Симметрия…есть идея, с помощью которой человек веками пытался объяснять и создавать порядок, красоту и совершенство» ( Герман Вейль)
История симметрии Однако как люди дошли до такой сложной и одновременно такой простой вещи, как симметрия? Ещё древние греки считали, что симметрия – это гармония, соразмерность. Они же и ввели термин συμμετρία, который сейчас перешёл в русское слово «симметрия» А у древних народов, таких как шумеры и египтяне, у первобытных племён, да и у кое-кого в наше время симметрия ассоциируется не только с красотой и гармонией, но и прежде всего с магией. Не зря же люди в эпоху мегалита для ритуальных целей сооружали кромлихи в форме круга – «идеально симметричной» геометрической фигуры.
Вспомогательные образы (плоскости, точки, прямые и т.д.), с помощью которых устанавливается симметрия, называются элементами симметрии.
Определение Симметрия относительно плоскости — это такое свойство геометрической фигуры, когда любой точке, расположенной по одной стороне плоскости, всегда будет соответствовать точка, расположенная по другую сторону плоскости, а отрезки, соединяющие эти точки, будут перпендикулярны плоскости симметрии и делятся ею пополам. Плоскость при этом называется плоскостью симметрии. М К М1 К1
Две фигуры называются симметричными относительно плоскости , если преобразование симметрии относительно этой плоскости переводит одну из них в другую. Фигура Ф в пространстве называется симметричной, если она симметрична сама себе.
Симметричные фигуры В трехмерном мире пространственных тел, где мы с вами живем, существуют плоскости симметрии. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно — решить не всегда просто. На плоскости фигурой с бесчисленным множеством осей симметрии был круг. Поэтому нас не должно удивлять, что в. пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.
Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.
Элементы симметрии Куб имеет центр симметрии — центр куба,9 осей симметрии и 9 плоскостей симметрии.
Элементы симметрии Октаэдр имеет центр симметрии — центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.
Элементы симметрии Икосаэдр имеет центр симметрии — центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.
Элементы симметрии Додекаэдр имеет центр симметрии — центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии
Симметрия встречается в физике, биологии, в архитектуре, в религии и искусстве
Симметрия в природе
Симметрия в архитектуре
Симметрия в танце
Симметрия в одежде
Симметрия в архитектуре г. Санкт- Петербурга Александринский театр Исаакиевский собор
Улица Росси имеет плоскость симметрии в общем обзоре, но не все детали в архитектуре зданий симметричны.
Видео:Построение симметричной точки относительно плоскости Н или VСкачать
Симметрия фигур в пространстве
Видео:Нахождение точки, симметричной данной относительно плоскости в пространствеСкачать
Центральная симметрия
Две фигуры называются симметричными относительно какой-либо точки О пространства, если каждой точке А одной фигуры соответствует в другой фигуре точка А’, расположенная на прямой ОА по другую сторону от точки О, на расстоянии, равном расстоянию точки А от точки О (черт. 114). Точка О называется центром симметрии фигур.
Пример таких симметричных фигур в пространстве мы уже встречали (§ 53), когда, продолжая за вершину рёбра и грани многогранного угла, получали многогранный угол, симметричный данному. Соответственные отрезки и углы, входящие в состав двух симметричных фигур, равны между собой. Тем не менее фигуры в целом не могут быть названы равными: их нельзя совместить одну с другой вследствие того, что порядок расположения частей в одной фигуре иной, чем в другой, как это мы видели на примере симметричных многогранных углов.
В отдельных случаях симметричные фигуры могут совмещаться, но при этом будут совпадать несоответственные их части. Например, возьмём прямой трёхгранный угол (черт. 115) с вершиной в точке О и рёбрами ОХ, OY, OZ.
Построим ему симметричный угол ОХ’Y’Z’. Угол OXYZ можно совместить с OX’Y’Z’ так, чтобы ребро ОХ совпало с OY’, а ребро OY c OX’. Если же совместить соответственные рёбра ОХ с ОХ’ и OY с OY’, то рёбра OZ и OZ’ окажутся направленными в противоположные стороны.
Если симметричные фигуры составляют в совокупности одно геометрическое тело, то говорят, что это геометрическое тело имеет центр симметрии. Таким образом, если данное тело имеет центр симметрии, то всякой точке, принадлежащей этому телу, соответствует симметричная точка, тоже принадлежащая данному телу. Из рассмотренных нами геометрических тел центр симметрии имеют, например:
- параллелепипед,
- призма, имеющая в основании правильный многоугольник с чётным числом сторон.
Правильный тетраэдр не имеет центра симметрии.
Симметрия относительно плоскости
Две пространственные фигуры называются симметричными относительно плоскости Р, если каждой точке А в одной фигуре соответствует в другой точка А’, причём отрезок АА’ перпендикулярен к плоскости Р и в точке пересечения с этой плоскостью делится пополам.
Теорема. Всякие два соответственных отрезка в двух симметричных фигурах равны между собой.
Пусть даны две фигуры, симметричные относительно плоскости Р. Выделим две какие-нибудь точки А и В первой фигуры, пусть А’ и В’ — соответствующие им точки второй фигуры (черт. 116, на чертеже фигуры не изображены).
Пусть далее С — точка пересечения отрезка АА’ с плоскостью Р, D — точка пересечения отрезка ВВ’ с той же плоскостью. Соединив прямолинейным отрезком точки С и D, получим два четырёхугольника ABDC и A’B’DC. Так как AС = A’С, BD = B’D и
Если какое-либо геометрическое тело можно разбить на две части, симметричные относительно некоторой плоскости, то эта плоскость называется плоскостью симметрии данного тела.
Геометрические тела, имеющие плоскость симметрии, чрезвычайно распространены в природе и в обыденной жизни. Тело человека и животного имеет плоскость симметрии, разделяющую его на правую и левую части.
На этом примере особенно ясно видно, что симметричные фигуры нельзя совместить. Так, кисти правой и левой рук симметричны, но совместить их нельзя, что можно видеть хотя бы из того, что одна и та же перчатка не может подходить и к правой и к левой руке. Большое число предметов домашнего обихода имеет плоскость симметрии: стул, обеденный стол, книжный шкаф, диван и др. Некоторые, как например обеденный стол, имеют даже не одну, а две плоскости симметрии (черт. 117).
Обычно, рассматривая предмет, имеющий плоскость симметрии, мы стремимся занять по отношению к нему такое положение, чтобы плоскость симметрии нашего тела, или по крайней мере нашей головы, совпала с плоскостью симметрии самого предмета. В этом случае симметричная форма предмета становится особенно заметной.
Симметрия относительно оси. Ось симметрии второго порядка.
Из этого определения непосредственно следует, что если два геометрических тела, симметричных относительно какой-либо оси, пересечь плоскостью, перпендикулярной к этой оси, то в сечении получатся две плоские фигуры, симметричные относительно точки пересечения плоскости с осью симметрии тел.
Отсюда далее легко вывести, что два тела, симметричных относительно оси, можно совместить одно с другим, вращая одно из них на 180° вокруг оси симметрии. В самом деле, вообразим все возможные плоскости, перпендикулярные к оси симметрии.
Каждая такая плоскость, пересекающая оба тела, содержит фигуры, симметричные относительно точки встречи плоскости с осью симметрии тел. Если заставить скользить секущую плоскость саму по себе, вращая её вокруг оси симметрии тела на 180°, то первая фигура совпадает со второй.
Это справедливо для любой секущей плоскости. Вращение же всех сечений тела на 180° равносильно повороту всего тела на 180° вокруг оси симметрии. Отсюда и вытекает справедливость нашего утверждения.
Если после вращения пространственной фигуры вокруг некоторой прямой на 180° она совпадает сама с собой, то говорят, что фигура имеет эту прямую своею осью симметрии второго порядка.
Название «ось симметрии второго порядка » объясняется тем, что при полном обороте вокруг этой оси тело будет в процессе вращения дважды принимать положение, совпадающее с исходным (считая и исходное). Примерами геометрических тел, имеющих ось симметрии второго порядка, могут служить:
1) правильная пирамида с чётным числом боковых граней; осью её симметрии служит её высота;
2) прямоугольный параллелепипед; он имеет три оси симметрии: прямые, соединяющие центры его противоположных граней;
3) правильная призма с чётным числом боковых граней. Осью её симметрии служит каждая прямая, соединяющая центры любой пары её противоположных граней (боковых граней и двух оснований призмы). Если число боковых граней призмы 2k, то число таких осей симметрии будет k + 1. Кроме того, осью симметрии для такой призмы служит каждая прямая, соединяющая середины её противоположных боковых рёбер. Таких осей симметрии призма имеет А.
Таким образом, правильная 2k-гранная призма имеет 2k+1 осей, симметрии.
Зависимость между различными видами симметрии в пространстве.
Теорема. Если фигура F симметрична с фигурой F’ относительно плоскости Р и в то же время симметрична с фигурой F» относительно точки О, лежащей в плоскости Р, то фигуры F’ и F» симметричны относительно оси, проходящей через точку О и перпендикулярной к плоскости Р.
Возьмём какую-нибудь точку А фигуры F (черт. 118). Ей соответствует точка А’ фигуры F’ и точка А» фигуры F» (сами фигуры F, F’ и F» на чертеже не изображены).
Пусть B — точка пересечения отрезка АА’ с плоскостью Р. Проведeм плоскость через точки А, А’ и О. Эта плоскость будет перпендикулярна к плоскости Р, так как проходит через прямую АА’, перпендикулярную к этой плоскости. В плоскости АА’О проведём прямую ОН, перпендикулярную к ОВ. Эта прямая ОН будет перпендикулярна и к плоскости Р. Пусть далее С-точка пересечения прямых А’А» и ОН.
B треугольнике АА’А» отрезок ВО соединяет середины сторон АА’ и АА», следовательно, ВО || А’А», но ВО⊥ОН, значит, А’А»⊥ОН. Далее, так как О — середина стороны АA», и СО || АА’, то А’С = А»С. Отсюда заключаем, что точки А’ и А» симметричны относительно оси ОН. То же самое справедливо и для всех других точек фигуры. Значит, наша теорема доказана. Из этой теоремы непосредственно следует, что две фигуры, симметричные относительно плоскости, не могут быть совмещены так, чтобы совместились их соответственные части. В самом деле, фигура F’ совмещается с F» путём вращения вокруг оси ОН на 180°. Но фигуры F» и F не могут быть совмещены как симметричные относительно точки, следовательно, фигуры F и F’ также не могут быть совмещены.
Оси симметрии высших порядков
Фигура, имеющая ось симметрии, совмещается сама с собой после поворота вокруг оси симметрии на угол в 180°. Но возможны случаи, когда фигура приходит к совмещению с исходным положением после поворота вокруг некоторой оси на угол, меньший 180°. Таким образом, если тело сделает полный оборот вокруг этой оси, то в процессе вращения оно несколько раз совместится со своим первоначальным положением. Такая ось вращения называется осью симметрии высшего порядка, причём число положений тела, совпадающих с первоначальным, называется порядком оси симметрии. Эта ось может и не совпадать с осью симметрии второго порядка. Так, правильная треугольная пирамида не имеет оси симметрии второго порядка, но её высота служит для неё осью симметрии третьего порядка. В самом деле, после поворота этой пирамиды вокруг высоты на угол в 120° она совмещается сама с собой (черт. 119).
При вращении пирамиды вокруг высоты она может занимать три положения, совпадающие с исходным, считая и исходное. Легко заметить, что всякая ось симметрии чётного порядка есть в то же время ось симметрии второго порядка.
Примеры осей симметрии высших порядков:
1) Правильная n-угольная пирамида имеет ось симметрии n-го порядка. Этой осью служит высота пирамиды.
2) Правильная n-угольная призма имеет ось симметрии n-го порядка. Этой осью служит прямая, соединяющая центры оснований призмы.
Симметрия куба.
Куб имеет девять плоскостей симметрии: шесть диагональных плоскостей и три плоскости, проходящие через середины каждой четвёрки его параллельных рёбер.
Куб имеет девять осей симметрии второго порядка: шесть прямых, соединяющих середины его противоположных рёбер, и три прямые, соединяющие центры противоположных граней (черт. 120).
Эти последние прямые являются осями симметрии четвёртого порядка. Кроме того, куб имеет четыре оси симметрии третьего порядка, которые являются его диагоналями. В самом деле, диагональ куба АG (черт. 120), очевидно, одинаково наклонена к рeбрам АВ, АD и АЕ, а эти рёбра одинаково наклонены одно к другому. Ecли соединить точки В, D и Е, то получим правильную треугольную пирамиду АDВЕ, для которой диагональ куба AG служит высотой. Когда при вращении вокруг высоты эта пирамида будет совмещаться сама с собой, весь куб будет совмещаться со своим исходным положением. Других осей симметрии, как нетрудно убедиться, куб не имеет. Посмотрим, сколькими различными способами куб может быть совмещён сам с собой. Вращение вокруг обыкновенной оси симметрии даёт одно положение куба, отличное от исходного, при котором куб в целом совмещается сам с собой.
Вращение вокруг оси третьего порядка даёт два таких положения, и вращение вокруг оси четвёртого порядка — три таких положения. Так как куб имеет шесть осей второго порядка (это обыкновенные оси симметрии), четыре оси третьего порядка и три оси четвёртого порядка, то имеются 6•1 + 4•2 + 3•3 = 23 положения куба, отличные от исходного, при которых он совмещается сам с собой.
Легко убедиться непосредственно, что все эти положения отличны одно от другого, а также и от исходного положения куба. Вместе с исходным положением они составляют 24 способа совмещения куба с самим собой.
🎦 Видео
Центральная симметрия. 6 класс.Скачать
Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Симметрия относительно точки, относительно прямой и относительно плоскостиСкачать
Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать
Симметрия относительно прямойСкачать
Начертательная геометрия, 1 курс. Построение точки В, симметричной точке А относительно плоскости.Скачать
11 класс, 10 урок, Осевая симметрияСкачать
Геометрия 9 класс (Урок№30 - Поворот.)Скачать
Симметрия относительно точки. 6 классСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Математика. Фигуры на плоскости, симметричные относительно точки. ТеорияСкачать
Симметрия относительно прямойСкачать
Построение треугольника, симметричного данному относительно точки, принадлежащей его сторонеСкачать