Симметричная нагрузка включенная треугольником

Трехфазная цепь, соединенная треугольником. Симметричная нагрузка.

Соединение обмоток генератора или фаз приемника, при котором начало одной фазы соединяется с концом другой, образуя замкнутый контур, называется соединением треугольником ( Симметричная нагрузка включенная треугольником) . Таким образом, нагрузка включается между линейными проводами.

Симметричная нагрузка включенная треугольником

Начало фазы «А» источника питания соединяют с концом фазы «В» и точку соединения обозначают «А». Далее соединяют точки «В» и «Z» (точка «В») и точки «С» и «X» (точка «С»). Направления ЭДС приняты как и при рассмотрении схемы соединения звездой.

Подобным образом соединяют треугольником и фазы приемника, сопротивления которых обозначены двумя индексами, соответствующими началу и концу фазы.

По фазам приемника протекают фазные токи Симметричная нагрузка включенная треугольником. Условно положительное направление фазных токов приемника принято от точки первого индекса к точке второго индекса. Условно положительное направление фазных напряжений Симметричная нагрузка включенная треугольникомсовпадает с положительным направлением фазных токов. Условное положительное направление линейных токов Симметричная нагрузка включенная треугольникомпринято от источника питания к приемнику.

Поскольку каждая фаза нагрузки включена между линейными проводами, то линейное напряжение равно фазному напряжению:

Симметричная нагрузка включенная треугольником

Комплексные токи в фазах нагрузки могут быть определены по закону Ома:

Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником

Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником.

Комплексные токи в линейных проводах связаны с фазными токами первым законом Кирхгофа:

Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником.

Итак, линейные токи при соединении треугольником равны векторной разности фазных токов тех фаз, которые соединены с данным линейным проводом.

Отсюда следует, что векторная сумма линейных токов равна нулю:

Симметричная нагрузка включенная треугольником. Система линейных-фазных напряжений Симметричная нагрузка включенная треугольникомпри соединении треугольником образует такой же замкнутый треугольник, как и при соединении звездой. Симметричная нагрузка включенная треугольником

Если нагрузка симметрична, то

Симметричная нагрузка включенная треугольником,

и из полученных соотношений следует, что фазные токи нагрузки и линейные токи одинаковы:

Симметричная нагрузка включенная треугольником; Симметричная нагрузка включенная треугольником,

а их векторы образуют симметричные системы.

Видео:Несимметричная нагрузка. Схема соединения "треугольник"Скачать

Несимметричная нагрузка. Схема соединения "треугольник"

Соединение потребителей электрической энергии в треугольник

Симметричная нагрузка включенная треугольником

При соединении фаз электроприемников в треугольник каждая фаза будет подключена к двум линейным проводам, как показано на рисунке ниже:

Симметричная нагрузка включенная треугольником

Поэтому при таком типе соединения, обратно звезде, независимо от характера и значения сопротивления приемника каждое фазное напряжение будет равно линейному, то есть UФ = UЛ. Если не брать во внимание сопротивления фазных проводов, то можно предположить, что напряжения источника и приемника электрической энергии равны.

На основании приведенной выше схемы и формулы можно сделать вывод, что соединение фаз приемников электрической энергии в треугольник следует применять тогда, когда каждая фаза трехфазного или двухфазного потребителя электрической энергии рассчитана на линейное напряжение сети.

В отличии от соединения звездой, где фазные и линейные токи равны, при соединении треугольником они равны не будут. Применив первый закон Кирхгофа к узловым точкам a, b, c получим соотношение между фазными и линейными токами:

Симметричная нагрузка включенная треугольником

Имея векторы фазных токов, используя данное соотношение, не трудно построить векторы линейных токов.

Видео:Мощность трехфазного напряжении при подключении нагрузки звездой и треугольникомСкачать

Мощность трехфазного напряжении при подключении нагрузки звездой и треугольником

Симметричная нагрузка при соединении приемников треугольником

В отношении любой фазы можно применять формулы, которые справедливы для однофазных цепей:

Симметричная нагрузка включенная треугольником

Очевидно, что при симметричной нагрузке:

Симметричная нагрузка включенная треугольником

Векторная диаграмма фазных (линейных) напряжений и токов при активно-индуктивной симметричной нагрузке показана ниже:

Симметричная нагрузка включенная треугольником

В соответствии с формулой (1) были построены векторы линейных токов. Также стоит обратить внимание на то, что при построении векторных диаграмм для соединения треугольник вектор линейного напряжения Uab принято направлять вертикально вверх.

Векторы линейных токов часто изображают соединяющими векторы фазных токов, как это показано на рисунке b):

Симметричная нагрузка включенная треугольником

На основании данной векторной диаграммы можно записать: Симметричная нагрузка включенная треугольником. Такое же соотношение справедливо и для других фаз. Исходя из этого, можно вывести формулу зависимости между фазным и линейным током для соединения фаз потребителей треугольником при симметричной нагрузке Симметричная нагрузка включенная треугольником.

Пример

Трехфазная сеть имеет линейное напряжение UЛ = 220 В. К ней необходимо подключить трехфазный электроприемник с фазным напряжением в 220 В и содержащим последовательно подключенные активное rф = 8,65 Ом и индуктивное xф = 5 Ом сопротивления.

Решение

Поскольку линейные и фазные напряжения в этом случае будут равны, то выбираем способ соединения обмоток потребителя в треугольник.

Линейные и фазные токи, а также полные сопротивления фаз будут равны:

Симметричная нагрузка включенная треугольником

Активная, реактивная и полная мощности электроприемника любой фазы будут равны:

Симметричная нагрузка включенная треугольником

Векторные диаграммы приведены выше.

Видео:Симметричная нагрузка в трехфазной цепиСкачать

Симметричная нагрузка в трехфазной цепи

Несимметричная нагрузка при соединении приемников треугольником

В случае несимметричного сопротивления фаз, как и при соединении в звезду, для подключения к сети электроприемники разбивают на три примерно одинаковые по мощности группы. Подключение каждой группы производится к двум фазным проводом, у которых есть отличия по фазе:

Симметричная нагрузка включенная треугольником

В пределах каждой группы подключение приемников производится параллельно.

После замены сопротивления нескольких приемников в одной фазе на одно эквивалентное получим такую схему:

Симметричная нагрузка включенная треугольником

Углы сдвига между напряжением и током, мощности и фазные токи можно найти из формулы (2). В случае несимметричной нагрузки (в нашем случае схема выше) фазные мощности, токи, а также углы сдвига (cos φ) не будут равны. Векторная диаграмма для случая, когда фаза ab имеет активную нагрузку, bc – активно-индуктивную, ca – активно-емкостную, показана ниже:

Симметричная нагрузка включенная треугольником

Для определения суммарной мощности всех фаз нужно применять выражение:

Симметричная нагрузка включенная треугольником

Пример

Дана несимметричная электрическая цепь, включенная по схеме выше, с параметрами: UЛ = 220 В, rab = 40 Ом, xLbc = 10 Ом, rbс = 17,3 Ом, xcа = 5 Ом, rCcа = 8,65 Ом. Нужно определить линейные и фазные токи, а также мощности.

Решение

Воспользовавшись выражением для определения комплексных значений получим:

Симметричная нагрузка включенная треугольником

Комплексные значения полных сопротивлений фаз: Zab = 40 Ом, Zbс = 17,3 + j10 Ом, Zbс = 8,65 – j5 Ом.

Комплексные и действующие значения линейных и фазных токов:

Симметричная нагрузка включенная треугольником

Дольше можно проводить расчеты, не прибегая к комплексному методу:

Симметричная нагрузка включенная треугольником

Общие активные и реактивные мощности:

Симметричная нагрузка включенная треугольником

Углы сдвига между токами и напряжениями:

Симметричная нагрузка включенная треугольником

Векторная диаграмма для несимметричного треугольника приводилась выше.

Видео:Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемыСкачать

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемы

Трехфазные симметричные цепи

Содержание:

Трехфазные симметричные цепи:

Основными приемниками электрической энергии как по количеству, так и по установленной мощности являются электродвигатели, применяемые для приведения в движение рабочих машин. Трехфазные асинхронные двигатели — наиболее простые, надежные и дешевые. Повсеместное применение их обусловило бурное развитие трехфазных систем — производства, передачи и распределения электрической энергии. Для этой цели применяются трехфазные генераторы, трансформаторы, линии передачи, распределительные сети.

Видео:Трехфазные электрические цепи │Теория ч. 1Скачать

Трехфазные электрические цепи │Теория ч. 1

Общие сведения о трехфазных системах

Многофазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют синусоидальные э. д. с. одинаковой частоты, сдвинутые относительно друг друга по фазе и создаваемые одним источником энергии. Соответствующая этому определению система из трех цепей называется трехфазной.

Трехфазная система э. д .с.

В трехфазном генераторе, в котором имеются три самостоятельные обмотки, сдвинутые относительно друг друга в пространстве на 120°, образуется трехфазная симметричная система э. д .с. Схематично это показано на рис. 20.1 применительно к генератору с одной парой полюсов на статоре и обмотками на роторе. Однако нужно заметить, что в реальных генераторах обмотка переменного тока неподвижна (расположена на статоре), а магнитные полюса вращаются (расположены на роторе). Такая конструкция генератора лучше, а принцип его работы не меняется.

Если число витков в обмотках одинаково, то при вращении ротора во всех обмотках наводятся э. д. с. одинаковой величины. Начальные фазы этих э. д. с. сдвинуты относительно друг друга на 120° в соответствии с пространственным расположением обмоток.

Симметричная нагрузка включенная треугольником

Трехфазная симметричная система э. д. с. — это совокупность трех э. д. с., имеющих одинаковую частоту и амплитуду, сдвинутых по фазе относительно друг друга на углы 120°.

Признаком нессимметрии трехфазной системы э. д. с. является неравенство амплитуд или неравенство углов сдвига фаз между каждой парой э. д. с.
На рис. 20.1 обмотки показаны в начальном положении (t = 0). При вращении ротора против часовой стрелки уравнения э. д. с. можно записать в следующем виде:
Симметричная нагрузка включенная треугольником

Симметричная нагрузка включенная треугольником
Рис. 20.2. Графики и векторная диаграмма симметричной системы э. д. с.

Несвязанная трехфазная система электрических цепей

На схемах замещения обмотки трехфазного генератора обозначают, как показано на рис. 20.3, а, и условно принимают направление э. д .с. от конца к началу обмотки положительным.

Если каждую обмотку трехфазного генератора соединить со своим приемником, образуются три независимые цепи, каждая со своим током. Одна такая цепь с ее элементами (обмотка генератора, приемник, соединительные провода) в практике называется фазой. Термин «фаза» употреблен в своем подлинном значении, которое остается в силе и для трехфазных цепей.
В несвязанной трехфазной системе генератор с приемником энергии соединяется шестью проводами. Большое число соединительных проводов — основной недостаток несвязанных систем, которые поэтому и не применяются. Сокращение числа соединительных проводов достигается в связанных системах, где обмотки генератора, как и отдельные фазы приемника, электрически связаны между собой и образуют трехфазные цепи.
Симметричная нагрузка включенная треугольником
Рис. 20.3. Несвязанная трехфазная система электрических цепей

Для этой цели выдающимся русским ученым М. О. Доливо-Добровольским (1862—1919) предложены две схемы соединения: звездой и треугольником, которые применяются и в настоящее время.

Трехфазная цепь называется симметричной, если комплексы сопротивлений всех ее фаз одинаковы. Когда в такой цепи действует симметричная система э. д. с., то токи в фазах равны по величине и сдвинуты по фазе на угол 120°, т. е. получается симметричная трехфазная система токов (рис. 20.3, б).

Нужно отметить, что приемник электрической энергии (электродвигатели, электролампы и т. п.) с генераторами, установленными на электростанциях, обычно непосредственно не связаны.

На пути электроэнергии от генератора к приемникам установлены трансформаторы, с помощью которых в электрической сети неоднократно изменяется напряжение. Для указанных приемников источником электрической энергии чаще всего служат трехфазные трансформаторы, которые по отношению к генераторам сами являются приемниками энергии. Поэтому далее все рассуждения будем относить к -трехфазному источнику, подразумевая при этом генератор или трансформатор.

Соединение звездой при симметричной нагрузке

На рис. 20.4 показана связанная система при соединении фаз источника энергии и приемника звездой. Такую систему легко получить из несвязанной системы.
Симметричная нагрузка включенная треугольником
Рис. 20.4. Связанные трехфазные системы электрических цепей при соединении звездой

Концы обмоток источника X, Y, Z соединяются в общую точку N, называемую нулевой точкой или нейтралью. Провода, соединяющие начала А, В и С обмоток источника с приемником (линейные провода), сохраняются; три провода, присоединенные к концам обмоток, заменяются одним. Благодаря этому в приемнике также образуется нулевая точка N’ (нейтраль). Нулевые точки источника энергии и приемника могут быть связаны проводом, который называется нулевым или нейтральным (рис. 20.4, а). В этом случае получается связанная четырехпроводная трехфазная система электрических цепей.
Далее будет показано, что в симметричных трехфазных цепях можно отказаться от нулевого провода, так как ток в нем равен нулю. В этом случае связь между источником и приемником, соединенными звездой, можно осуществлять по трехпроводной схеме (рис. 20.4, б).

Фазные напряжения

Разность потенциалов между линейными зажимами и нейтралью называется фазным напряжением (Симметричная нагрузка включенная треугольником, Симметричная нагрузка включенная треугольником, Симметричная нагрузка включенная треугольником).

Фазные напряжения источника есть напряжения между началами и концами фаз, они отличаются от э. д. с. на величину падения напряжения в обмотках. Если сопротивлением обмоток можно пренебречь, то фазные напряжения источника равны соответствующим э. д. с. В симметричной системе они изображаются, так же как и э. д. с., тремя равными по величине векторами, сдвинутыми по фазе на 120° (рис. 20.5, а).
Симметричная нагрузка включенная треугольником
Рис. 20.5. Векторные диаграммы напряжений при соединении обмоток источника звездой

В четырехпроводной и симметричной трехпроводной цепях фазные напряжения в приемнике меньше, чем в источнике, на величину падения напряжения в соединительных проводах. Если сопротивлением проводов можно пренебречь, то фазные напряжения в приемнике считаются такими же, как в источнике.

Линейные напряжения

Разность потенциалов между каждой парой линейных проводов называется линейным напряжением (Симметричная нагрузка включенная треугольником, Симметричная нагрузка включенная треугольником, Симметричная нагрузка включенная треугольником).

Если принять потенциал нулевой точки N источника энергии равным нулю, то потенциалы его линейных зажимов:
Симметричная нагрузка включенная треугольником Симметричная нагрузка включенная треугольникомСимметричная нагрузка включенная треугольником
Линейные напряжения:
Симметричная нагрузка включенная треугольником
Симметричная нагрузка включенная треугольником
Симметричная нагрузка включенная треугольником
Переходя к действующим величинам, напишем выражения в комплексной форме:
Симметричная нагрузка включенная треугольником
Потенциалы линейных зажимов (или линейных проводов) в каждое мгновение отличаются друг от друга из-за наличия сдвига фаз между фазными напряжениями. Следовательно, линейные напряжения не равны нулю. Их можно определить аналитически по уравнениям (20.3) или графически с помощью векторной диаграммы рис. 20.5.

Из векторной диаграммы видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: Симметричная нагрузка включенная треугольником Симметричная нагрузка включенная треугольником Симметричная нагрузка включенная треугольникомравны по величине и сдвинуты относительно друг друга на 120°. Вместе с тем при прямой последовательности фаз звезда векторов линейных напряжений опережает на 30° звезду векторов фазных напряжений.

Векторную диаграмму удобно выполнить топографической, тогда каждой точке цепи соответствует определенная точка на диаграмме (рис. 20.5, б). Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжение между одноименными точками цепи.
Действующая величина линейных напряжений легко определяется по векторной диаграмме из треугольника, образованного векторами двух фазных и одного линейного напряжения, например ANB:
Симметричная нагрузка включенная треугольником
Обозначая все фазные напряжения Uф, а линейные напряжения Uл получим общее соотношение между линейными и фазными напряжениями в симметричной системе
Симметричная нагрузка включенная треугольником

Фазные и линейные токи

В связанной системе (см. рис. 20.4, а), так же как и в несвязанной, каждая фаза представляет собой замкнутую цепь.

В соответствии с положительным направлением э. д. с. в обмотках источника положительное направление токов в линейных проводах — от источника к приемнику, а в нулевом проводе — от приемника к источнику.

В трехфазных цепях различают фазные и линейные токи.
Токи в фазах источника и приемника называют фазными (на рис. 20.4 i’A, i’B, i’С; общее обозначение iф). Токи в линейных проводах называют линейными (iA, iB, iС; общее обозначение iл).

При соединении звездой в точках перехода из источника в линию и из линии в приемник нет разветвлений, поэтому фазные и линейные токи одинаковы между собой в каждой фазе:
Симметричная нагрузка включенная треугольником

Задача 20.3.

В каждой фазе трехфазного генератора наводится э. д. с. Е = 127 В. Начертить схему, построить векторную диаграмму и определить линейные напряжения при холостом ходе, если в общую точку соединены зажимы: а) X, Y, Z; б) X, Y, C; в) X, B, Z; г) X, B, C; д)A, B, C. Буквами A, B, C обозначены начала, а X, Y, Z — концы обмоток.

Симметричная нагрузка включенная треугольником

Рис. 20.6. К задаче 20.3

Симметричная нагрузка включенная треугольником

Рис. 20.7. К задаче 20.3

Решение. Схема генератора и векторная диаграмма при соединении в общую точку зажимов X, Y, Z показаны на рис. 20.6. Из векторной диаграммы видно, что линейные напряжения одинаковы:
Симметричная нагрузка включенная треугольником

При соединении в общую точку зажимов X, Y, C (рис. 20.7) фаза С включена началом в нулевой точке, поэтому вектор фазного напряжения этой фазы изображен на векторной диаграмме в положении, повернутом на 180° к нормальному, и обозначен UZ. Из векторной диаграммы следует: UAB = 220 В; UBZ = 127; UZA = 127 В.

Соединение треугольником при симметричной нагрузке

При соединении треугольником из трех обмоток источника образуется замкнутый на себя контур (рис. 20.8, а). Точно так же замкнутый контур создается из трех фаз приемника.

Общие точки двух фаз источника и двух фаз приемника соединяются между собой линейными проводами. Так образуется связанная трехфазная трехпроводная система, в которой каждая обмотка источника соединена с соответствующей фазой приемника парой линейных проводов, каждый из которых обеспечивает такую связь в двух смежных фазах.

Симметричная нагрузка включенная треугольником

Рис. 20.8. Связанная трехфазная система электрических цепей при соединении треугольником

Фазные и линейные напряжения

Соединение нескольких обмоток источника в замкнутый контур возможно лишь в том случае, если сумма всех э. д. с. этого контура равна нулю.
Это требование выполняется при таком порядке соединения, когда конец предыдущей обмотки соединяется с началом следующей. Например, конец X фазы А соединен с началом фазы В в общей точке ХВ, конец Y фазы В соединен с началом фазы С в общей точке YС и конец Z фазы С соединен с началом фазы А в общей точке ZА.

Симметричная система э. д. с., действующих в контуре, имеет сумму, равную нулю (рис. 20.8, б): Симметричная нагрузка включенная треугольником

В этом случае при холостом ходе источника ток в его обмотках отсутствует.
При несимметрии системы э. д. с. их сумма не равна нулю, поэтому уже при холостом ходе в обмотках источника образуется ток, который может быть большим даже при малой несимметрии, так как сопротивление обмоток незначительно.

Симметричная нагрузка включенная треугольником
Рис. 20.9. Неправильное соединение треугольником обмоток источника

Симметричная нагрузка включенная треугольником
Рис. 20.10. Векторные диаграммы напряжений при соединении обмоток источника треугольником.

При неправильном включении обмоток, когда две соседние фазы соединены началами или концами (рис. 20.9), сумма э. д. с. в контуре равна удвоенной величине э. д. с. фазы.
Из схемы соединения треугольником видно, что фазные и линейные напряжения совпадают, так как конец одной фазы соединен с началом другой:
Симметричная нагрузка включенная треугольником
Векторную диаграмму напряжений можно построить в виде звезды или в виде замкнутого треугольника векторов (рис. 20.10). В последнем случае диаграмма является топографической.

Фазные и линейные токи

Каждая фаза приемника присоединении треугольником находится под линейным напряжением. Этим обусловлено наличие в приемнике фазных токов iAB, iBC, iСA, положительное направление которых на схеме рис. 20.8 выбрано соответственно положительному направлению э. д. с. в фазах источника.

Точки А’, В’, С’ приемника, так же как и точки А, В, С источника, являются электрическими узлами, поэтому фазные токи отличаются от линейных iA, iB, iС. Для узловых точек А, В, С можно написать уравнения в комплексной форме по первому закону Кирхгофа:
Симметричная нагрузка включенная треугольником
При симметричной нагрузке токи во всех фазах одинаковы. Звезда векторов линейных токов сдвинута относительно звезды фазных токов на 30° против вращения векторов, если последовательность фаз — прямая (рис. 20.11, а).
Действующая величина линейных токов определяется по векторной диаграмме из равнобедренного треугольника, образованного векторами двух фазных и одного линейного токов, например из треугольника ANC (рис. 20.11, б):
Симметричная нагрузка включенная треугольником

Симметричная нагрузка включенная треугольником

Рис. 20.11. Векторные диаграммы токов при соединении приемников треугольником

Обозначив все фазные токи Iф, а линейные токи Iл, получим общее соотношение между линейными и фазными токами в симметричной цепи:Симметричная нагрузка включенная треугольником

Расчет симметричных трехфазных цепей

Формулы (20.4) и (20.8), как уже отмечено, справедливы только для симметричных систем напряжений и токов.

Трехфазные электродвигатели имеют три одинаковые фазы обмотки, и создаваемая ими электрическая нагрузка симметрична. Нессимметрию создают однофазные приемники, например лампы электрического освещения и другие бытовые электроприемники. Если при проектировании осветительную нагрузку разделить между фазами поровну, то в процессе эксплуатации нагрузка, как правило, будет несимметричной из-за неодновременности включения ламп.

При большом числе однофазных приемников нессимметрия нагрузки, связанная с неодновременностью их включения, невелика, поэтому линии с напряжением 3; 6 кВ и выше, предназначенные для электроснабжения промышленных предприятий или определенного района (фидерные линии), выполняют трехпроводными независимо от схемы соединения групп приемников (звездой или треугольником).

Цель расчета состоит в определении токов в фазах приемника и проводах линии, а также мощности приемника в целом и в каждой фазе. Может быть поставлена и обратная задача.

Соединение звездой

В симметричной цепи комплексы сопротивлений фаз приемника одинаковы Симметричная нагрузка включенная треугольникоми между зажимами приемника действует симметричная система линейных напряжений при любой схеме соединения источника (звездой или треугольником).

Поэтому на расчетной схеме источник (генератор или трансформатор) не показывают и говорят, что приемник включен в трехфазную сеть (см. рис. 21.3, о). (20.8)
В симметричной цепи достаточно провести расчет одной фазы, так как токи и мощности во всех фазах одинаковы.
При известном линейном напряжении Uл фазное напряжение
Симметричная нагрузка включенная треугольником
Фазный ток, равный линейному,
Симметричная нагрузка включенная треугольником

Соединение треугольником

При соединении треугольником фазное напряжение Симметричная нагрузка включенная треугольником
Ток в фазе
Симметричная нагрузка включенная треугольником
Линейный ток
Симметричная нагрузка включенная треугольником

Определение мощности

Мощность в каждой фазе трехфазной цепи определяется теми же формулами, которые применялись при расчете однофазных цепей.
При симметричной нагрузке фазные напряжения, токи и углы сдвига фаз между ними в каждой фазе одинаковы, поэтому при определении мощности цепи можно написать общие выражения:
Симметричная нагрузка включенная треугольником
Учитывая, что при соединении звездой
Симметричная нагрузка включенная треугольникомСимметричная нагрузка включенная треугольником
а при соединении треугольником
Симметричная нагрузка включенная треугольникомСимметричная нагрузка включенная треугольником
мощности можно определять через линейные величины напряжений и токов:
Симметричная нагрузка включенная треугольником
При решении задач символическим методом мощность определяется, так же как и в однофазных цепях, произведением соответствующих комплекса напряжения и сопряженного комплекса тока.

Задача 20.9.

К трехфазному трансформатору с линейным напряжением на вторичной обмотке 380 В включены звездой электрические лампы мощностью 40 Вт каждая (по 100 шт. в фазе) и трехфазный двигатель мощностью 10 кВт, имеющий к. п. д. 85%, Симметричная нагрузка включенная треугольником
Пренебрегая сопротивлением проводов, определить токи в линии.
Решение. Заданная нагрузка симметрична, так как в каждой фазе включены одинаковые по величине и характеру приемники: осветительная нагрузка Симметричная нагрузка включенная треугольникоми одна фаза двигателя.

Симметричная нагрузка включенная треугольником
Рис. 20.12. К задаче 20.9

Расчет можно вести на одну фазу:
Симметричная нагрузка включенная треугольником
Ток осветительной нагрузки
Симметричная нагрузка включенная треугольником
Ток в фазе двигателя
Симметричная нагрузка включенная треугольником
Для нахождения тока в линии нужно сложить токи ламп и двигателя. Эти токи по фазе не совпадают, поэтому разложим их на активные и реактивные составляющие и сложим одноименные составляющие.
Ток в лампах совпадает по фазе с напряжением, поэтому реактивный ток ламп I = 0, активный ток I = I0 = 18,2 А.
Активный ток в фазе двигателя
Симметричная нагрузка включенная треугольником
Реактивный ток в фазе двигателя
Симметричная нагрузка включенная треугольником
Общий активный ток. в линии
Симметричная нагрузка включенная треугольником
Общий реактивный ток в линии
Симметричная нагрузка включенная треугольником
Ток в линии
Симметричная нагрузка включенная треугольником

Задача 20.12.

Приемник электрической энергии, соединенный треугольником, имеет активное сопротивление R = 12 Ом и емкость С = 199 мкФ. Определить: токи в фазах приемника и в линии, с помощью которой приемник подключен к сети с линейным напряжением U = 220 В и частотой f = 50 Гц; активную, реактивную и полную мощности приемника.
Решение.
Емкостное сопротивление фазы приемника
Симметричная нагрузка включенная треугольником
Полное сопротивление фазы приемника
Симметричная нагрузка включенная треугольником
Фазное напряжение приемника
Симметричная нагрузка включенная треугольником
Фазный ток
Симметричная нагрузка включенная треугольником
Линейный ток
Симметричная нагрузка включенная треугольником
Мощность приемника:
активная
Симметричная нагрузка включенная треугольником
реактивная
Симметричная нагрузка включенная треугольником
полная
Симметричная нагрузка включенная треугольником

Симметричный режим работы трехфазной цепи

Расчет трехфазной цепи, так же как и расчет всякой сложной цепи, ведется обычно в комплексной форме. Ввиду того что фазные э. д. с. генератора сдвинуты друг относительно друга на 120°, для краткости математической записи применяется фазовый оператор — комплексная величина

Симметричная нагрузка включенная треугольником

Умножение вектора на оператор а означает поворот вектора на 120° в положительном направлении (против хода часовой стрелки).

Соответственно умножение вектора на множитель а2 означает поворот вектора на, 240° в положительном направлении или, что то же, поворот его на 120° в отрицательном направлении.

Симметричная нагрузка включенная треугольником

Если э. д. с. фазы А равна Симметричная нагрузка включенная треугольникомто э. д. с. фаз В и С равны соответственно:

Симметричная нагрузка включенная треугольником

В простейшем случае симметричного режима работы трехфазной цепи, когда генератор и нагрузка соединены звездой (рис. 12-9, а), векторная диаграмма э. д. с. и токов имеет вид, показанный на рис. 12-9, б.

Ток в каждой фазе отстает от э. д. с. той же фазы на

угол Симметричная нагрузка включенная треугольникомгде r и х — активное и реактивное сопротивления фаз.

* Кроме того, применяется понятие «фазное напряжение в данном сечении» трехфазной цепи по отношению к какой-либо точке, принимаемой за нуль, например земле, нулевой точке генератора или искусственной нулевой точке.

Ток в фазе А находят так же, как в однофазной цепи, потому что нейтральные точки генератора и нагрузки в симметричном режиме могут быть соединены как имеющие одинаковые потенциалы:

Симметричная нагрузка включенная треугольником
Соответственно токи в фазах В и С через ток Симметричная нагрузка включенная треугольником

Симметричная нагрузка включенная треугольником

Наличие нейтрального провода «не вносит при симметричном режиме никаких изменений, так как сумма токов трех фаз равна нулю и ток в нем отсутствует:

Симметричная нагрузка включенная треугольником

Таким образом, при симметричном режиме работы трехфазной цепи задача сводится к расчету одной из фаз
Симметричная нагрузка включенная треугольником

аналогично расчету однофазной цепи. При этом сопротивление обратного (нейтрального) провода не учитывается, так как ток в нем и соответственно падение напряжения на нем отсутствуют.

По мере удаления от генератора фазные напряжения, определяемые падениями напряжения до нейтральной точки нагрузки, изменяются по модулю (обычно убывают) и по фазе. Линейные напряжения определяются как разности соответствующих фазных напряжений, например: Симметричная нагрузка включенная треугольником Симметричная нагрузка включенная треугольникомВ любом месте трехфазной линии при симметричном режиме соблюдается следующее соотношение между модулями линейных и фазных напряжений:

Симметричная нагрузка включенная треугольником

Симметричная нагрузка включенная треугольником

т. e. Симметричная нагрузка включенная треугольникомопережает по фазе Симметричная нагрузка включенная треугольникома на 30°, причем модуль Симметричная нагрузка включенная треугольникомраз превышает Симметричная нагрузка включенная треугольником

В случае соединения треугольником линейные токи определяются в соответствии с первым законом Кирхгофа как разности фазных токов и при симметричном режиме соблюдается соотношениеСимметричная нагрузка включенная треугольником

Соединение фаз генератора или нагрузки треугольником должно быть для расчета заменено эквивалентным соединением фаз звездой; вследствие этого расчет трехфазной цепи с соединением фаз треугольником приводится в конечном итоге к расчету эквивалентной трехфазной цепи с соединением фаз звездой.

Между сопротивлениями сторон треугольника Симметричная нагрузка включенная треугольникоми лучей звезды Симметричная нагрузка включенная треугольникомимеет место соотношение Симметричная нагрузка включенная треугольникомвытекающее из формул преобразования треугольника сопротивлений в эквивалентную звезду. Это соотношение справедливо как для сопротивлений симметричной трехфазной нагрузки, так и для сопротивлений симметричного .трехфазного • генератора. При этом фазные э. д. с. эквивалентного генератора, соединенного звездой, берутся в Симметричная нагрузка включенная треугольникомраз меньшими фазных э. д. с. заданного генератора, соединенного треугольником (кроме того, они должны быть сдвинуты на угол 30°). Это легко усмотреть из векторной потенциальной диаграммы напряжений генератора.

Активная мощность симметричной трехфазной нагрузки равна:

Симметричная нагрузка включенная треугольником

Ввиду того что при соединении нагрузки звездой Симметричная нагрузка включенная треугольникома при соединении нагрузки треугольникомСимметричная нагрузка включенная треугольникомактивная мощность трехфазной цепи независимо от вида соединения выражается через линейные напряжения и ток следующим образом:

Симметричная нагрузка включенная треугольником

здесь Симметричная нагрузка включенная треугольником— угол сдвига фазного тока относительно одноименного фазного напряжения.

Аналогичным образом для реактивной и полной мощностей симметричной трехфазной нагрузки имеем:

Симметричная нагрузка включенная треугольником

Приведенные выражения не означают, что при пересоединении нагрузки со звезды на треугольник (или наоборот) активная и реактивная мощности не изменяются. При пересоединении нагрузки со звезды на треугольник при заданном линейном напряжении фазные токи возрастут в Симметричная нагрузка включенная треугольникомраз, в линейный ток — в 3 раза и поэтому мощность возрастет в 3 раза.

Симметричная нагрузка включенная треугольником

Если нейтральная точка симметричной трехфазной нагрузки выведена, то измерение активной мощности может быть осуществлено одним ваттметром, включенным по схеме рис. 12-10, а (одноименные или так называемые генераторные выводы последовательной и параллельной цепей ваттметра отмечены на рис. 12-10, а звездочками). Утроенное показание ваттметра равно суммарной активной мощности трех фаз.

Если нейтральная точка не выведена или нагрузка соединена треугольником, то можно воспользоваться схемой рис. 12-10, б, где параллельная цепь ваттметра и два добавочных активных сопротивления Симметричная нагрузка включенная треугольникомравные по величине сопротивлению параллельной цепи ваттметра, образуют искусственную нейтральную точку Симметричная нагрузка включенная треугольником

* Следует заметить, что здесь применим только электродинамический или ферродинамический ваттметр, сопротивление параллельной цепи которого является чисто активным. Индукционный ваттметр неприменим по той причине, что сопротивление параллельной цепи такого ваттметра имеет реактивное сопротивление; для создания искусственной нейтральной точки в этом случае потребовались бы реактивные добавочные сопротивления.

Для получения суммарной мощности, как и в предыдущем случае, показание ваттметра утраивается.

Симметричная нагрузка включенная треугольником

На рис. 12-11 показан способ измерения реактивной мощности в симметричной трехфазной цепи при помощи одного ваттметра: последовательная цепь ваттметра включена в фазу А, а параллельная — между фазами В и С, причем генераторные выводы ваттметра присоединены к фазам А и В.

Показание ваттметра в этом случае равно:

Симметричная нагрузка включенная треугольником

Для получения суммарной реактивной мощности показание умножается на Симметричная нагрузка включенная треугольником

Разделив активную мощность на полную мощность, получим:

Симметричная нагрузка включенная треугольником.
Пример 12-1. Определить ток в генераторе при симметричном режиме работы трехфазной цепи, представленной на рис, 12-12, а.

Симметричная нагрузка включенная треугольником

Сопротивления Симметричная нагрузка включенная треугольникомсоединенные треугольником, заменяются эквивалентной звездой из сопротивлений Симметричная нагрузка включенная треугольником

При симметричном режиме нейтральные точки генератора и нагрузки, как было указано выше, могут быть объединены. Тогда режим работы каждой фазы, например фазы А, может быть рассмотрен в однофазной расчетной схеме (рис, 12-12, б),

Результирующее сопротивление цепи одной фазы равно:

Симметричная нагрузка включенная треугольником
Искомый ток в фазе АСимметричная нагрузка включенная треугольником

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле
  • Электрические цепи синусоидального тока
  • Электрические цепи несинусоидального тока
  • Принцип действия асинхронного и синхронного двигателей
  • Метод симметричных составляющих
  • Цепи периодического несинусоидального тока
  • Резонанс токов

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

💥 Видео

Соединение трехфазных цепей звездой и треугольникомСкачать

Соединение трехфазных цепей звездой и треугольником

Трехфазные цепи. Схема соединения "ЗВЕЗДА"Скачать

Трехфазные цепи. Схема соединения "ЗВЕЗДА"

Трехфазные цепи - ТРЕУГОЛЬНИК. Расчет трехфазной цепи, соединенной треугольникомСкачать

Трехфазные цепи - ТРЕУГОЛЬНИК. Расчет трехфазной цепи, соединенной треугольником

Соединение звезда и треугольник. Различие между нимиСкачать

Соединение звезда и треугольник. Различие между ними

Соединение обмоток треугольникомСкачать

Соединение обмоток треугольником

Исследование трехфазной цепи с нагрузкой включенной по схеме треугольникСкачать

Исследование трехфазной цепи с нагрузкой включенной по схеме треугольник

Расчет и измерение трехфазной активной мощностиСкачать

Расчет и измерение трехфазной активной мощности

Трёхфазный переменный ток. Соединение "звезда" и "треугольник"Скачать

Трёхфазный переменный ток. Соединение "звезда" и "треугольник"

Трехфазные электрические цепи. Соединение треугольникомСкачать

Трехфазные электрические цепи. Соединение треугольником

Схема треугольник (трехфазные цепи)Скачать

Схема треугольник (трехфазные цепи)

Векторная диаграмма для трехфазной цепи │ТРЕУГОЛЬНИКСкачать

Векторная диаграмма для трехфазной цепи │ТРЕУГОЛЬНИК

Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать

Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигатель

Трехфазные электрические цепи │Теория ч. 2Скачать

Трехфазные электрические цепи │Теория ч. 2

Что такое звезда и треугольник в трансформаторе?Скачать

Что такое звезда и треугольник в трансформаторе?

Расчет трехфазной цепи при соединении фаз приемника треугольникомСкачать

Расчет трехфазной цепи при соединении фаз приемника треугольником
Поделиться или сохранить к себе: