Антенна треугольник как согласовать

Видео:0036_РадиоШтурман Теория настройки и согласования антеннСкачать

0036_РадиоШтурман Теория настройки и согласования антенн

Согласование антенн и согласующие устройства

Антенна треугольник как согласовать

В любительской практике крайне редко используются антенны, входное сопротивление которых равно волновому сопротивлению фидера, и в свою очередь, выходному сопротивлению передатчика (идеальный вариант согласования). Чаще всего такого соответствия нет и приходится применять специальные согласующие устройства. Антенну, фидер и выход передатчика следует рассматривать как единую систему, в которой передача энергии должна осуществляться без потерь.

Реализация этой непростой задачи потребует согласования в двух местах: в точке соединения антенны с фидером и фидера с выходом передатчика. Наиболее популярны различного рода трансформирующие устройства: от резонансных колебательных контуров до коаксиальных трансформаторов в виде отрезков коаксиального кабеля требуемой длины. Все они нужны для согласования сопротивлений, что в конечном итоге и приводит к минимизации потерь в линии передачи. И, самое главное, к снижению внеполосных излучений.

Как правило, стандартное выходное сопротивление современных широкополосных передатчиков (трансиверов) 500м. Большинство применяемых в качестве фидера коаксиальных кабелей также имеют стандартную величину волнового сопротивления 50 или 750м. Антенны в зависимости от типа и конструкции могут иметь входное сопротивление в очень широком интервале величин: от нескольких Ом до сотен Ом и больше.
Известно, что входное сопротивление одноэлементных антенн на резонансной частоте носит практически активный характер. И чем больше частота передатчика отличается от резонансной* частоты антенны в ту или другую сторону, тем больше во входном сопротивлении антенны появляется реактивная составляющая емкостного или индуктивного характера. В многоэлементных антеннах входное сопротивление на резонансной частоте имеет комплексный характер, так как свою лепту в образование реактивной составляющей вносят пассивные элементы.

В том случае, когда входное сопротивление антенны имеет чисто активный характер, согласовать его с сопротивлением фидера несложно с помощью любого из подходящих трансформирующих устройств. При этом потери совсем незначительны. Но, как только во входном сопротивлении образуется реактивная составляющая, то согласование усложняется, и требуется более сложное согласующее устройство, способное скомпенсировать нежелательную реактивность. И это устройство должно находиться в точке питания антенны. Не скомпенсированная реактивность ухудшает КСВ в фидере и увеличивает потери.
Попытка полной компенсации реактивности на нижнем конце фидера (у передатчика) безуспешна, так как ограничена параметрами самого фидера. Перестройка частоты передатчика в пределах узких участков любительских диапазонов не приводит к появлению значительной реактивной составляющей, поэтому в большинстве случаев нет необходимости компенсировать реактивность. Правильно спроектированные многоэлементные антенны также не имеют большой реактивной составляющей входного сопротивления, и обычно ее компенсации не требуется.

В эфире часто возникают споры о роли и назначении антенного согласующего устройства (антенного тюнера) при согласовании передатчика с антенной. Одни возлагают на него большие надежды, другие считают его ненужной игрушкой. Чем же на самом деле (на практике) может и чем не может помочь антенный тюнер?

В первую очередь тюнер — это высокочастотный трансформатор сопротивлений, способный при необходимости скомпенсировать реактивность емкостного или индуктивного характера.

Рассмотрим простой пример:
Разрезной вибратор (диполь), имеющий на резонансной частоте входное сопротивление активного характера около 700м, соединен 75-омным коаксиальным кабелем (фидером) с передатчиком, выходное сопротивление которого 500м. Тюнер установлен на выходе передатчика и в данном случае выполняет роль согласующего узла между фидером и передатчиком, с чем он легко справляется.
Если передатчик перестроить на частоту отличную от резонансной частоты антенны, то во входном сопротивлении антенны возникнет реактивность, которая тут же проявится на нижнем конце фидера. Тюнер также способен ее скомпенсировать, и передатчик опять будет согласован с фидером антенны.

Что будет на выходе фидера, в точке его соединения с антенной?
Используя тюнер только на выходе передатчика, полную компенсацию обеспечить не удастся, и в фидере возникнут потери из-за неточного согласования с антенной. В этом случае понадобится еще один тюнер, который придется подключить между фидером и антенной, тогда он исправит положение и скомпенсирует реактивность. В зтом примере фидер выполняет роль согласованной линии передачи произвольной длины.

Еще один пример:
Рамочную антенну, имеющую входное сопротивление активного характера приблизительно 1100м, необходимо согласовать с 50-омной линией передачи. Выход передатчика 500м. Здесь потребуется согласующее устройство, установленное в точке подключения фиДера к антенне. Обычно многие любители используют ВЧ трансформаторы разных типов с ферритовыми сердечниками, но удобнее изготовить четвертьволновый коаксиальный трансформатор из 75-омного кабеля.
Длина отрезка кабеля А/4 х 0.66, где
Я — длина волны,
0.66 — коэффициент укорочения для большинства известных коаксиальных кабелей.
Коаксиальный трансформатор включается между входом антенны и 50-омным фидером.
Если его свернуть в бухту диаметром 15…20см, то он будет выполнять и функцию симметрирующего устройства. Фидер с передатчиком согласуется автоматически, при равенстве их сопротивлений. В этом случае от услуг антенного тюнера можно вообще отказаться.

Для данного примера возможен еще один способ согласования:
При помощи полуволнового или кратного половине волны коаксиального кабеля вообще с любым волновым сопротивлением (также с учетом коэффициента укорочения). Он включается между антенной и тюнером, находящимся возле передатчика. Входное сопротивление антенны около 110Ом переносится к нижнему концу кабеля и с помощью тюнера трансформируется в сопротивление 500м. В этом случае имеет место полное согласование антенны с передатчиком, а фидер выполняет функцию повторителя.

В более сложных случаях, когда входное сопротивление антенны не соответствует волновому сопротивлению фидера, а сопротивление фидера не соответствует выходному сопротивлению передатчика, необходимы два согласующих устройства. Одно вверху для согласования антенны с фидером, другое внизу — для согласования фидера с передатчиком. И обойтись только одним антенным фидером для согласования всей цепи: антенна — фидер — передатчик не представляется возможным.

Наличие реактивности еще больше осложняет ситуацию. Антенный тюнер в этом случае значительно улучшит согласование передатчика с фидером, облегчив тем самым работу оконечного каскада, но не более того. Из-за рассогласования фидера с антенной будут иметь место потери, и эффективность работы самой антенны будет пониженной. Включенный КСВ-метр между передатчиком и тюнером зафиксирует КСВ=1, а между тюнером и фидером этого не произойдет по причине рассогласоаания фидера с антенной.

Напрашивается вполне справедливый вывод: тюнер полезен тем, что поддерживает нормальный режим передатчика при работе на несогласованную нагрузку, но при этом не способен улучшить эффективность работы антенны при ее рассогласовании с фидером.

П-контур, используемый в выходном каскаде передатчика, также может выполнять роль антенного тюнера, но при условии оперативного изменения индуктивности и обеих емкостей.
Как правило, антенные тюнеры и ручные и автоматические — это резонансные контурные перестраиваемые устройства. Ручные имеют два- три регулирующих элемента и не оперативны в работе. Автоматические — дороги, а для работы на больших мощностях — очень дороги.

Давайте рассмотрим довольно простое широкополосное согласующее устройство (тюнер) на рис 1, удовлетворяющее большинству вариаций при согласовании передатчика с антенной. :

Антенна треугольник как согласовать

Он очень эффективен при работе с антеннами (рамки, диполи), используемыми на гармониках, когда фидер является полуволновым повторителем. В данном случае входное сопротивление антенны на разных диапазонах различно, но с помощью согласующего устройства легко согласуется с передатчиком. Предлагаемый тюнер может работать при мощностях передатчика до 1,5кВт в полосе частот от 1.5 до 30МГц.
Основные элементы тюнера — ВЧ автотрансформатор на феррито- вом кольце от отклоняющей системы телевизора УНТ-35 и переключатель на 17 положений. Возможно применение конусных колец от телевизоров УНТ-47/59 или других.

Обмотка содержит 12 витков, намотанных в два провода. Начало одной обмотки соединяется с концом другой. В таблице и на схеме нумерация витков сквозная. Сам провод — многожильный во фторопластовой изоляции. Диаметр провода 2,5мм по изоляции. Отводы сделаны от каждого витка, начиная с восьмого от заземленного конца.

Переключатель — керамический, галетного типа на 17 положений.

Автотрансформатор располагается максимально близко к переключателю, а соединительные проводники между ними должны быть минимальной длины. Возможно применение переключателя на 11 положений при сохранении конструкции трансформатора с меньшим количеством отводов, например, с 10 по 20 виток. Но в этом случае уменьшится и интервал трансформации сопротивлений.

Зная входное сопротивление антенны, можно воспользоваться таким трансформатором для согласовании антенны с фидером 50 или 750м, сделав только необходимые отводы. В этом случае он помещается во влагонепроницаемую коробку, заливается парафином и устанавливается в точке питания антенны.

Также это согласующее устройство может быть выполнено как самостоятельная конструкция или входить в состав антенно-коммутационного блока радиостанции.

Для наглядности метка на ручке переключателя (на лицевой панели) указывает на величину сопротивления, соответствующую данному положению. Для компенсации реактивной составляющей индуктивного характера возможно подключение переменного конденсатора С1, рис.2.

Антенна треугольник как согласовать

Зависимость сопротивления от количества витков приводится в таблице 1. Расчет производился исходя из соотношения сопротивлений, которое находится в квадратичной зависимости от количества витков.

Таблица 1.
Антенна треугольник как согласовать

Видео:Простые антенны КВ на любительские диапазоны для начинающих монтаж ua9upkСкачать

Простые антенны КВ на любительские диапазоны для начинающих  монтаж ua9upk

Настройка и согласование антенно-фидерных устройств

В предисловии к своей книге «Антенны», Ротхаммель в первой же строке повторил известную истину : хорошая антенна — лучший усилитель высокой частоты. Однако многие радиолюбители иногда забывают о том, что построить хорошую антенную систему стоит столько же, сколько стоит хороший трансивер и наладка антенно- фидерного устройства требует такого же серьезного подхода как и наладка приемо-передатчика. Построив антенну по взятому откуда- нибудь описанию, радиолюбители чаще всего налаживают ее с помощью КСВ-метра, либо вообще полагаются на случай и не производят никаких измерений. Поэтому во многих случаях можно услышать отрицательные отзывы о неплохих антеннах ,или что для повседневных связей им недостаточно разрешенной мощности. Здесь сделана попытка в краткой форме сделать обзор простых способов согласования и измерений в АФС (антенно-фидерных системах) в виде путеводителя по книгам (далее по тексту ссылки по номерам):

  1. К.Ротхаммель «Антенны», М., «Энергия», 1979 третье издание
  2. З.Беньковский, Э.Липинский, «Любительские антенны коротких и ультракоротких волн», М., «Радио и связь», 1983

а также приведены некоторые практические советы. Итак.

Почему нельзя серьезно относиться к наладке вновь созданных антенно- фидерных устройств с помощью КСВ-метра? КСВ-метр показывает отношение (Uпрям+Uотр) к (Uпрям-Uотр) или другими словами во сколько раз отличается импеданс антенно-фидерного тракта от волнового сопротивления прибора (выход передатчика, например). По показаниям КСВ-метра нельзя понять, что значит КСВ=3 при сопротивлении выходного каскада 50 Ом. Волновое сопротивление антенно-фидерного тракта в этом случае может быть чисто активным (на частоте резонанса ) и может быть равным 150 Ом или 17 Ом (и то и другое равновероятно!). Не на частоте резонанса сопротивление будет содержать активную и реактивную (емкостную или индуктивную )в самых различных соотношениях и тогда совершенно непонятно, что надо делать — то ли компенсировать реактивность, то ли согласовывать волновое сопротивление. Для точного согласования АФУ необходимо знать:

  • a) реальную резонансную частоту антенны;
  • б) сопротивление антенны;
  • в) волновое сопротивление фидера;
  • г) выходное сопротивление приемо-передатчика.

Целью согласования антенны является задача выполнения двух условий подключения антенны к приемо-передатчику:

  1. добиться отсутствия реактивной составляющей в сопротивлении антенны на используемой частоте.
  2. добиться равенства волнового сопротивления антенны и приемо-передающей аппаратуры.

Если эти условия выполняются в месте запитки антенны (точка соединения антенны с фидером), то фидер работает в режиме бегущей волны. Если выполнить условия согласования в месте соединения фидера с приемо-передатчиком, а сопротивление антенны отличается от волнового сопротивления фидера, то фидер работает в режиме стоячей волны. Однако работа фидера в режиме стоячей волны может повлечь за собой искажение диаграммы направленности в направленных антеннах (за счет вредного излучения фидера) и в некоторых случаях может привести к помехам окружающей приемопередающей аппаратуре. Кроме того, если антенна используется на прием, то на оплетку фидера будут приниматься нежелательные излучения (например помехи от вашего настольного компьютера). Поэтому предпочтительнее использовать питание антенны по фидеру в режиме бегущей волны. До того как поделиться практическим опытом согласования антенн, несколько слов об основных способах измерений.

1. ИЗМЕРЕНИЕ РЕЗОНАНСНОЙ ЧАСТОТЫ АНТЕННЫ

1.1. Наиболее простой способ измерения резонансной частоты антенны- с помощью гетеродинного индикатора резонанса (ГИР). Однако в многоэлементных антенных системах измерения ГИРом бывает выполнить сложно или совсем невозможно из-за взаимного влияния элементов антенны, каждый из которых может иметь свою собственную резонансную частоту.

1.2. Способ измерения с помощью измерительной антенны и контрольного приемника. К измеряемой антенне подключается генератор, на расстоянии 10-20l от измеряемой антенны устанавливается контрольный приемник с антенной, которая на этих частотах не имеет резонансов (например короче l/10). Генератор престраивается в выбраном участке диапазона, с помощью S-метра контрольного приемника измеряют напряженность поля и строят зависимость напряженности поля от частоты. Максимум соответствует частоте резонанса. Этот способ особенно применим для многоэлеметных антенн, В этом случае измерительный приемник необходимо располагать в главном лепестке диаграммы направленности измеряемой антенны. Вариант этого способа измерения — применение в качестве генератора, передачика мощностью в несколько Ватт и простого измерителя напряженности поля(например [1], Рис 14-20.). Однако надо учесть, что при измеренях вы будете создавать помехи окружающим. Практический совет при измерениях в диапазоне 144-430 мГц — при измерениях, не держите в руках измеритель напряженности поля, чтобы ослабить влияние тела на показания прибора. Закрепите прибор над полом на высоте 1-2 метра на диэлетрической подставке (например дерево, стул) и снимайте показания, находясь на расстоянии 2-4 метра , не попадая в зону между прибором и измеряемой антенной.

1.3. Измерение с помощью генератора и антенноскопа (например [1], Рис 14-16). Этот способ применим в основном на HF и не дает точных результатов, но позволяет попутно оценивать и сопротивление антенны. Суть измерений заключается в следующем. Как известно, антенноскоп позволяет измерять полное сопротивление (активное+реактивное). Т.к. антенны обычно запитывают в пучности тока (минимум входного сопротивления) и на частоте резонанса отсутствует реактивность, то на резонансной частоте антенноскоп будет показывать минимальное сопротивление, а на всех остальных частотах чаще всего оно будет больше. Отсюда и последовательность измерений — перестраивая генератор, измеряют входное сопротивление антенны. Минимум сопротивления соответствует резонансной частоте.Одно НО — антенноскоп необходимо подключать обязательно прямо в точке питания антенны, а не через кабель! И практическое наблюдение — если рядом с вами находится мощный источник радиоизлучения (теле или радиостанция), из-за наводок антенноскоп никогда не будет балансироваться «в ноль» и производить измерения становится практически невозможно.

1.4. Очень удобно определять резонансную частоту вибраторов с помощью измерителя АЧХ. Подключив выход измерителя АЧХ и детекторную головку к антенне, определяют частоты , на которых видны провалы в АЧХ. На этих частотах антенна резонирует и происходит отбор энергии с выхода прибора, что хорошо видно на экране прибора. Для измерений подходят практически любые измерители АЧХ (Х1-47, Х1-50, Х1-42, СК4-59). Вариант измерений- с помощью анализатора спектра (СК4-60) в режиме с длительным послесвечением и внешнего генератора. В качестве внешнего генератора можно использовать генератор гармоник: на HF- с шагом 10 кГц, на 144 мГц- с шагом 100 кГц, на 430 мГц- с шагом 1 мГц. На частотах до 160 мГц наиболее ровномерный спектр с высокой интенсивностью гармоник дает схема генератора гармоник на интегральной схеме 155ИЕ1 . В диапазоне 430 мГц достаточный уровень гармоник можно получить в схеме с накопительным диодом 2А609Б (схема калибратора 50 мГц из СК4-60).

2. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ В АНТЕННО-ФИДЕРНЫХ УСТРОЙСТВАХ.

2.1. Самый простой (еще доступный по цене) серийно выпускаемый прибор, для измерений активного сопротивления и фазы сигнала (а значит и реактивной составляющей)- это измерительный мост. Существует несколько модификаций этих приборов для использования с 50 и 75-омным трактом и на различные диапазоны частот до 1000 мГц — это измерительные мосты Р2-33. Р2-35.

2.2 В радиолюбительской практике чаще используют более простой вариант измерительного моста, предназначенного для измерений полного сопротивления (антенноскоп). Конструкция его, в отличие от мостов Р2-33. очень проста и легко повторяется в домашних условиях ([1], стр. 308-309).

2.3 Полезно помнить некоторые замечания, касающиеся сопротивлений в АФС.

2.3.1. Длинная линия с волновым сопротивлением Zтр и с электрической длиной l/4, 3 х l/4 и т.д. трансформирует сопротивление , которое можно рассчитать из формулы

либо по Рис. 2.39 [2]. В частном случае, если один конец l/4 отрезка разомкнуть, то бесконечное сопротивление на этом конце отрезка трансформируется в ноль на противоположном конце (короткое замыкание) и такие устрой- ства используют для трансформации больших сопротивлений в малые. Внимание! Эти виды трансформаторов эффективно работают только в узком частотном диапазоне, ограниченом долями процентов от рабочей частоты. Длинная линия с электрической длиной кратной l/2 вне зависимости от волнового сопротивления этой линии трансформирует входное сопротивление в выходное с отношением 1:1 и их используют для передачи споротивлений на необходимое расстояние без трансформации сопротивлений, либо для переворачивания фазы на 180°. В отличие от l/4 линий, линии l/2 обладают большей широкополосностью.

2.3.2. Если антенна короче , чем вам необходимо, то на вашей частоте сопротивление антенны имеет реактивную составляющую емкостного характера. В случае, когда антенна длиннее, на вашей частоте антенна имеет рективность индуктивного характера. Разумеется на вашей частоте нежелательную реактивность можно компенсировать введением дополнительной реактивности противоположного знака. Например, если антенна длиннее, чем это необходимо, индуктивную составляющую можно компенсировать включением последовательно с питанием антенны емкости. Значение необходимого конденсатора можно рассчитать для нужной частоты, зная значение индуктивной составляющей (см. Рис 2.38 [2]), либо подобрать экспериментально, как это описано в пункте 5.

2.3.3. Введение дополнительных пассивных элементов обычно понижает входное сопротивление антенны (например для квадрата: со 110-120 Ом до 45-75 Ом).

2.3.4. Ниже приведены теоретические значения наиболее часто встречающихся вибраторов (вибраторы находятся в свободном от окружающих предметов пространстве), антенн и фидеров:

  • полуволновый вибратор с запиткой в пучности тока (в середине) — 70 Ом, при расстройке на +-2% реактивное сопротивление iX изменяется практически линейно от -25 до +25 с нулем на частоте резонанса;
  • полуволновый вибратор с запиткой с помощью Т-образной схемы согласования -120 Ом; — петлевой вибратор с одинаковыми диаметрами всех проводников- 240..280 Ом, при расстройке +-1% реактивного сопротивления нет, но при расстройках более 2% реактивное сопротивление iX резко возрастает до +- 50 и более (см. Рис 2.93 [2]);
  • петлевой вибратор с различными диаметрами проводников (см таб. 1.15 [1] или Рис. 2.90в [1]) — до 840 Ом; — двойной петлевой вибратор с одинаковыми диаметрами всех провод- ников — 540. 630 Ом;
  • двойной петлевой вибратор с различными диаметрами проводников (см. таб. 1.16 [1] или Рис 2.91 [2]) — до 1500 Ом;
  • четвертьволновый вертикальный вибратор с противовесами под углом 135° по отношению к вибратору — 50 Ом;
  • четвертьволновый вертикальный вибратор с противовесами под углом 90° по отношению к вибратору — 30 Ом;
  • вибратор в виде квадрата длиной l — 110..120 Ом; — вибратор в виде квадрата длиной 2l (два витка) — 280 Ом;
  • вибратор в виде теругольника (дельта) — 120. 130 Ом;
  • Inverded-V с углом раскрыва 90° — 45 Ом;
  • Inverted-V с углом раскрыва 130° — 65 Ом;
  • волновой канал, оптимизированый на максимальное усиление — 5. 20 Ом;
  • волновой канал, оптимизированый на наилучшее согласование — 50 Ом;
  • двухпроводная линия (Рис 2.26 [2]) — 200..320;
  • две параллельные коаксиальные линии Z=75 Ом — 37.5 Ом;
  • то же, четвертьволновый трансформатор Zвх=50 Ом — Zвых=28 Ом;
  • то же, четвертьволновый трансформатор Zвх=75 Ом — Zвых=19 Ом;
  • две параллельные коаксиальные линии Z=50 Ом — 25 Ом;
  • то же, четвертьволновый трансформатор Zвх=50 Ом — Zвых=12.5 Ом;
  • то же, четвертьволновый трансформатор Zвх=75 Ом — Zвых=8.4 Ом
  • трансформатор из трех параллельных линий Z=50 Ом Zвх=50 — Zвых=5.6 Ом;
  • то же Z=50 Ом Zвх=75 — Zвых=3.7 Ом;

3. ИЗМЕРЕНИЕ СТЕПЕНИ СОГЛАСОВАНИЯ

Эти измерения желательно делать уже после согласования, описанного в п. 5 для оценки качества согласования.

3.1. Приборы для определения степени согласования открытых двухпроводных линий с антенной:

3.1.1. Обычная неоновая лампочка или ГИР. При перемещении лампочки вдоль линии передачи, яркость свечения лампочки не должна изменяться (режим бегущей волны). Вариант измерений — прибор, состоящий из петли связи, детектора и стрелочного индикатора (см. Рис. 14.8 [1]).

3.1.2. Двухламповый индикатор (см. рис. 14.7 [1]). Настройкой добиваются, чтобы лампочка подключеная к плечу, близкому к антенне, не светилась, а в противополжном плече свечение было максимально. При малых уровнях мощностей можно использовать детектор и стрелочный индикатор вместо лампочки.

3.2. Приборы для определения степени согласования в коаксиальных трактах:

3.2.1. Измерительная линия — прибор, который применим для измерения степени согласования в коаксиальных и волноводных линиях начиная с УКВ и заканчивая сантиметровым диапазоном волн. Кострукция его несложная — жесткий коаксиальный кабель (волновод) с продольной щелью во внешнем проводнике, вдоль которой перемещается измерительная головка с измерительным зондом, опущеным в щель. Перемещая измерительную головку вдоль тракта, определяют максимумы и миниммумы показаний, по соотношению которых судят о степени согласования (режим бегущей волны — показания не изменяются по всей длине измерительной линии).

3.2.2. Измерительный мост (рис.14.18 [1]). Позволяет измерять КСВ в линиях переадчи до 100 Ом на HF и VHF при подводимой мощности около сотен милливатт. Очень простая в изготовлении кострукция, не содержит моточных улов, конструктивных узлов, критичных к точности изготовления.

3.2.3. КСВ-метры на основе рефлектометров. Описано множество конструкций этих приборов (например Рис. 14-14 [1]. Позволяют следить за состоянием АФC в процессе работы в эфире. 3.2.4. КСВ-метры на основе измерителей АЧХ. Очень удобные для изучения качества согласования на любых частотах, вплоть до 40 гГц. Принцип измерений — измерительный комплект приборов состоит из измерителя АЧХ и направленного ответвителя, соединенных в следующую схему:

1
X1-47

>———————>3
2
0 Антенна треугольник как согласовать0

Видео:Антенна вертикальная дельта на 80м Ч2Скачать

Антенна вертикальная дельта на 80м Ч2

Антенна горизонтальный треугольник 80 м на все КВ диапазоны

Видео:Согласуем входное сопротивление антенны с кабелем и трансивером.Скачать

Согласуем входное сопротивление антенны с кабелем и трансивером.

Горизонтальная DELTA LOOP 80м на всех любительских диапазонах

Не всегда представляется возможным расположить вертикально рамочную антенну для низкочастотных диапазонов из-за больших геометрических размеров, малоэтажной застройки и других факторов. Поэтому до сих пор не ослабевает интерес к DELTA LOOP антеннам, расположенным горизонтально по отношению к поверхности земли. Высота подвеса подобной антенны колеблется от 6 до 40 м от земной поверхности.

Входное сопротивление, настроенной в резонанс антенны, а зависимости от указанной высоты подвеса, изменяется в широких пределах от 35 до 135 Ом. Антенна, расположенная на высоте 9. 17 м имеет входное сопротивление 50 — 75 Ом и может быть запитана соответствующим коаксиальным кабелем без дополнительных согласующих устройств.

Диаграмма излучения горизонтальной DELTA LOOP приближается к тороиду с наличием в нижней части боковых лепестков с малой энергетикой и углом излучения 35 — 40 градусов. С увеличением частоты тороид диаграммы обрастает боковыми лепестками с пологим углом излучения, что способствует проведению дальних QSO.

Входное сопротивление DELTA LOOP антенны, расчитанной для диапазона 80 м, при высоте подвеса 6. 40 м изменяется от 117 — 300 Ом на диапазоне 40 м до 75) — 1200 Ом на диапазоне 10 м.

Периметр антенны рассчитывается по формуле:

Для эффективной работы антенны на всех любительских диапазонах в качестве фидера используется согласованная линия.

Ее длина может быть определена по формуле:

L (м) = 150/n*Кукор*F (МГц), где:

n = 1, 2, 3 — число полуволн;
Кукор. = 1,52

Расчет учитывает коэффициент укорочения кабеля и, при отсутствии вблизи антенны деревьев и крупных строений, дает довольно точные размеры. В таблице 1 приводится длина коаксиального кабеля (фидера) для 9-ти любительских диапазонов.

Длина кабеля L (м) и кратная l/2 27.41 27.39 29.24 27.99 27.25 28.05 27.63 27.89

Частота F (МГц) 3.6 7.05 10.125 14.1 18.1 21.1 24.9 28.3

Антенна имеет фидер длиной 27,25 м. Симметрирование производится с помощью ВЧ- трансформатора на ферритовом кольце, содержащим несколько витков коаксиального кабеля. Отдельным коммутатором подключаются отрезки коаксиального кабеля (см. таблицу 1), которые дополняют фидер антенны до величины, кратной l /2. Линия питания становится согласованной для каждого радиолюбительского диапазона, рис.1.

Антенна треугольник как согласовать

При согласовании антенны необходимо использовать универсальное согласующее устройство [1], или любое другое. Для измерения входного сопротивления антенны используется простой измеритель тока, рис.2.

Антенна треугольник как согласовать

Градуировка производится непосредственно от передатчика на эквиваленте нагрузке, рис.3.

Антенна треугольник как согласовать

Входное сопротивление антенны, с точностью 3. 5 Ом, можно определить по номограмме, которая не приводится из-за громоздкости. При желании ее можно построить самостоятельно.

Iэкв = Uвых/Rэкв
Rвx = Uвых/Iэкв

Всем хороших радиосвязей и 73!

С. Ксенофонтов ES4WN

г. Кохтла-Ярве

Загляните в группу радиолюбителей ВК: https://vk.com/ra1ohx

Поделитесь записью в своих социальных сетях!

🎬 Видео

Куда излучает антенна ( треугольник)Скачать

Куда излучает антенна ( треугольник)

Продолжаем рассказ про простые самодельные проволочные антенны. В этом видео у наc ант ТреугольникСкачать

Продолжаем рассказ про простые самодельные проволочные антенны. В этом видео у наc ант Треугольник

Антенна Фукса (наклонный луч), схема согласования, теория и мой практический опытСкачать

Антенна Фукса (наклонный луч), схема согласования, теория и мой практический опыт

Антенны и дураки. Основы антенных устройствСкачать

Антенны и дураки. Основы антенных устройств

Вторая жизнь антенны или переделка антенны Дельта Н311- 01Скачать

Вторая жизнь антенны или переделка антенны Дельта Н311- 01

дельта на 20м из подручных средств. за один часСкачать

дельта на 20м из подручных средств. за один час

антенна треугольникСкачать

антенна треугольник

Дельта на 80мСкачать

Дельта на 80м

Антенна"Дельта" принимаю шарманщиковСкачать

Антенна"Дельта" принимаю шарманщиков

Антенна треугольник-сборкаСкачать

Антенна треугольник-сборка

Универсальная коротковолновая антеннаСкачать

Универсальная коротковолновая антенна

Подвесил ещё одну антенну для кв диапазона. Антенна треугольник. Shortwave antennaСкачать

Подвесил ещё одну антенну для кв диапазона. Антенна треугольник. Shortwave antenna

Антенна треугольник-готоваСкачать

Антенна треугольник-готова

Цифровая комнатная антенна Дельта цифра 5ВСкачать

Цифровая комнатная антенна Дельта цифра 5В

Строю антенну Дельта на 80м. Часть 1.Скачать

Строю антенну Дельта на 80м. Часть 1.

Антенна треугольник- подготовкаСкачать

Антенна треугольник- подготовка
Поделиться или сохранить к себе: