Сила лоренца при движении частицы по окружности

Сила Лоренца — основные понятия, формулы и определение с примерами

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле Сила лоренца при движении частицы по окружности

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной Сила лоренца при движении частицы по окружности

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде
Сила лоренца при движении частицы по окружности
где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), Сила лоренца при движении частицы по окружности— средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда
Сила лоренца при движении частицы по окружности
где Сила лоренца при движении частицы по окружности— число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной Сила лоренца при движении частицы по окружности

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:
Сила лоренца при движении частицы по окружности

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:
Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности

Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости Сила лоренца при движении частицы по окружностисоставляющая вектора индукции Сила лоренца при движении частицы по окружностимагнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца Сила лоренца при движении частицы по окружностидействующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы Сила лоренца при движении частицы по окружности(R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности
Сила лоренца при движении частицы по окружности

и радиус окружности

Сила лоренца при движении частицы по окружности
описываемой частицей в магнитном поле.

Сила лоренца при движении частицы по окружности

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

  • равномерного вдоль поля со скоростью Сила лоренца при движении частицы по окружности( Сила лоренца при движении частицы по окружности— составляющая вектора скорости, параллельная вектору индукции Сила лоренца при движении частицы по окружностимагнитного поля);
  • по окружности радиусом R в плоскости, перпендикулярной к вектору Сила лоренца при движении частицы по окружности, с постоянной по модулю скоростью Сила лоренца при движении частицы по окружности( Сила лоренца при движении частицы по окружности— составляющая вектора скорости, перпендикулярная вектору индукции Сила лоренца при движении частицы по окружностимагнитного ноля).

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле
Сила лоренца при движении частицы по окружности

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Видео:Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать

Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой Архиповым

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

Сила лоренца при движении частицы по окружности

где Сила лоренца при движении частицы по окружности— электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная Сила лоренца при движении частицы по окружности Сила лоренца при движении частицы по окружности— магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда Сила лоренца при движении частицы по окружности, а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике — это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

Сила лоренца при движении частицы по окружности

где I — сила тока; е — заряд частицы; Сила лоренца при движении частицы по окружности— концентрация частиц в проводнике; V — объем; Сила лоренца при движении частицы по окружности— скорость движения частиц; S площадь поперечного сечения проводники.

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности

Если учесть, то Сила лоренца при движении частицы по окружности

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Сила лоренца при движении частицы по окружности

Это и есть формула для расчета магнитной составляющей силы Лоренца:
Сила лоренца при движении частицы по окружности

Магнитная составляющая силы Лоренца
Сила лоренца при движении частицы по окружности

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (Сила лоренца при движении частицы по окружности≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если
Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности
Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.

Сила лоренца при движении частицы по окружности
Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.

Сила лоренца при движении частицы по окружности
Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.

Дано:
В = 10 -4 Тл,
Сила лоренца при движении частицы по окружности= 1,6 ∙ 10 -6 м/с,
е = 1,6 • 10 -19 Кт,
Сила лоренца при движении частицы по окружности= 90°.
Peшение
Сила Лоренца в данном случае действует
под прямым углом к скорости движения
электрона, не изменяя его скорости.
Поэтому она придает электрону центростремительное ускорение.
Таким образом, можно записать:
Сила лоренца при движении частицы по окружности
R-?

Отсюда
Сила лоренца при движении частицы по окружности

Подставим значения физических величин:

Сила лоренца при движении частицы по окружности

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Сила ЛоренцаСкачать

Сила Лоренца

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Помещенный в магнитное поле проводник, через который пропущен электрический ток, испытывает воздействие силы Ампера Сила лоренца при движении частицы по окружности, а её величина может быть подсчитана по следующей формуле:

Сила лоренца при движении частицы по окружности (1)

где Сила лоренца при движении частицы по окружностии Сила лоренца при движении частицы по окружности– сила тока и длина проводника, Сила лоренца при движении частицы по окружности– индукция магнитного поля, Сила лоренца при движении частицы по окружности– угол между направлениями силы тока и магнитной индукции. Почему же это происходит?

Сила лоренца при движении частицы по окружности

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Что такое сила Лоренца — определение, когда возникает, получение формулы

Известно, что электрический ток – это упорядоченное перемещение заряженных частиц. Установлено также, что во время движения в магнитном поле каждая из этих частиц подвергается действию силы. Для возникновении силы требуется, чтобы частица находилась в движении.

Сила Лоренца – это сила, которая действует на электрически заряженную частицу при её движении в магнитном поле. Её направление ортогонально плоскости, в которой лежат векторы скорости частицы и напряженности магнитного поля. Равнодействующая сил Лоренца и есть сила Ампера. Зная ее, можно вывести формулу для силы Лоренца.

Время, требуемое для прохождения частицей отрезка проводника, Сила лоренца при движении частицы по окружности, где Сила лоренца при движении частицы по окружности– длина отрезка, Сила лоренца при движении частицы по окружности– скорость частицы. Суммарный заряд, перенесенный за это время через поперечное сечение проводника, Сила лоренца при движении частицы по окружности. Подставив сюда значение времени из предыдущего равенства, имеем

Сила лоренца при движении частицы по окружности(2)

В то же время Сила лоренца при движении частицы по окружности, где Сила лоренца при движении частицы по окружности– количество частиц, находящееся в рассматриваемом проводнике. При этом Сила лоренца при движении частицы по окружности, где Сила лоренца при движении частицы по окружности– заряд одной частицы. Подставив в формулу значение Сила лоренца при движении частицы по окружностииз (2), можно получить:

Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности

Используя (1), предыдущее выражение можно записать как

Сила лоренца при движении частицы по окружности

После сокращений и переносов появляется формула для вычисления силы Лоренца

Сила лоренца при движении частицы по окружности

С учетом того, что формула записана для модуля силы, ее необходимо записать так:

Сила лоренца при движении частицы по окружности(3)

Поскольку Сила лоренца при движении частицы по окружности, то для вычисления модуля силы Лоренца неважно, куда направлена скорость, – по направлению силы тока или против, – и можно сказать, что Сила лоренца при движении частицы по окружности– это угол, образуемый векторами скорости частицы и магнитной индукции.

Запись формулы в векторном виде будет выглядеть следующим образом:

Сила лоренца при движении частицы по окружности

Сила лоренца при движении частицы по окружности– это векторное произведение, результатом которого является вектор с модулем, равным Сила лоренца при движении частицы по окружности.

Исходя из формулы (3), можно сделать вывод о том, что сила Лоренца является максимальной в случае перпендикулярности направлений электрического тока и магнитного поля, то есть при Сила лоренца при движении частицы по окружности, и исчезать при их параллельности (Сила лоренца при движении частицы по окружности).

Необходимо помнить, что для получения правильного количественного ответа – например, при решении задач, – следует пользоваться единицами системы СИ, в которой магнитная индукция измеряется в теслах (1 Тл = 1 кг·с −2 ·А −1 ), сила – в ньютонах (1 Н = 1 кг·м/с 2 ), сила тока – в амперах, заряд в кулонах (1 Кл = 1 А·с), длина – в метрах, скорость – в м/с.

Видео:Правило ПРАВОЙ и ЛЕВОЙ руки. Сила Ампера и Сила Лоренца. ЕГЭ Физика. Николай НьютонСкачать

Правило ПРАВОЙ и ЛЕВОЙ руки. Сила Ампера и Сила Лоренца. ЕГЭ Физика. Николай Ньютон

Определение направления силы Лоренца с помощью правила левой руки

Поскольку в мире макрообъектов сила Лоренца проявляется как сила Ампера, для определения ее направления можно пользоваться правилом левой руки.

Сила лоренца при движении частицы по окружности

Нужно поставить левую руку так, чтобы раскрытая ладонь находилась перпендикулярно и навстречу линиям магнитного поля, четыре пальца следует вытянуть в направлении силы тока, тогда сила Лоренца будет направлена туда, куда указывает большой палец, который должен быть отогнут.

Видео:Физика. 10 класс. Сила Лоренца. Движение заряженной частицы в магнитном поле /12.04.2021/Скачать

Физика. 10 класс. Сила Лоренца. Движение заряженной частицы в магнитном поле /12.04.2021/

Движение заряженной частицы в магнитном поле

В простейшем случае, то есть при ортогональности векторов магнитной индукции и скорости частицы сила Лоренца, будучи перпендикулярной к вектору скорости, может менять только её направление. Величина скорости, следовательно, и энергия будут оставаться неизменными. Значит, сила Лоренца действует по аналогии с центростремительной силой в механике, и частица перемещается по окружности.

В соответствии со II законом Ньютона (Сила лоренца при движении частицы по окружности) можно определить радиус вращения частицы:

Сила лоренца при движении частицы по окружности.

Необходимо обратить внимание, что с изменением удельного заряда частицы (Сила лоренца при движении частицы по окружности) меняется и радиус.

При этом период вращения T = Сила лоренца при движении частицы по окружности= Сила лоренца при движении частицы по окружности. Он не зависит от скорости, значит, взаимное положение частиц с различными скоростями будет неизменным.

Сила лоренца при движении частицы по окружности

В более сложном случае, когда угол между скоростью частицы и напряженностью магнитного поля является произвольным, она будет перемещаться по винтовой траектории – поступательно за счет составляющей скорости, направленной параллельно полю, и по окружности под влиянием ее перпендикулярной составляющей.

Видео:Галилео. Эксперимент. Сила ЛоренцаСкачать

Галилео. Эксперимент. Сила Лоренца

Применение силы Лоренца в технике

Кинескоп

Кинескоп, стоявший до недавнего времени, когда на смену ему пришел LCD-экран (плоский), в каждом телевизоре, не смог бы работать, не будь силы Лоренца. Для формирования на экране телевизионного растра из узкого потока электронов служат отклоняющие катушки, в которых создается линейно изменяющееся магнитное поле. Строчные катушки перемещают электронный луч слева направо и возвращают обратно, кадровые отвечают за вертикальное перемещение, двигая бегающий по горизонтали луч сверху вниз. Такой же принцип используется в осциллографах – приборах, служащих для изучения переменного электрического напряжения.

Масс-спектрограф

Масс-спектрограф – прибор, использующий зависимость радиуса вращения заряженной частицы от ее удельного заряда. Принцип его работы следующий:

Источник заряженных частиц, которые набирают скорость с помощью созданного искусственно электрического поля, с целью исключения влияния молекул воздуха помещается в вакуумную камеру. Частицы вылетают из источника и, пройдя по дуге окружности, ударяются в фотопластинку, оставляя на ней следы. В зависимости от удельного заряда меняется радиус траектории и, значит, точка удара. Этот радиус легко измерить, а зная его, можно вычислить массу частицы. С помощью масс-спектрографа, например, изучался состав лунного грунта.

Циклотрон

Независимость периода, а значит, и частоты вращения заряженной частицы от её скорости в присутствии магнитного поля используется в приборе, называемом циклотроном и предназначенном для разгона частиц до высоких скоростей. Циклотрон – это два полых металлических полуцилиндров – дуанта (по форме каждый из них напоминает латинскую букву D), помещенных прямыми сторонами навстречу друг другу на небольшом расстоянии.

Сила лоренца при движении частицы по окружности

Дуанты помещаются в постоянное однородное магнитное поле, а между ними создается переменное электрическое поле, частота которого равна частоте вращения частицы, определяемой напряженностью магнитного поля и удельным зарядом. Попадая дважды за период вращения (при переходе из одного дуанта в другой) под воздействие электрического поля, частица каждый раз ускоряется, увеличивая при этом радиус траектории, и в определенный момент, набрав нужную скорость, вылетает из прибора через отверстие. Таким способом можно разогнать протон до энергии в 20 МэВ (мегаэлектронвольт).

Магнетрон

Устройство, называемое магнетроном, который установлен в каждой микроволновой печи, – еще один представитель приборов, использующих силу Лоренца. Магнетрон служит для создания мощного СВЧ-поля, которое разогревает внутренний объем печи, куда помещается пища. Магниты, входящие в его состав, корректируют траекторию движения электронов внутри прибора.

Магнитное поле Земли

А в природе сила Лоренца играет крайне важную для человечества роль. Её наличие позволяет магнитному полю Земли защитить людей от смертоносного ионизирующего излучения космоса. Поле не дает возможности заряженным частицам бомбардировать поверхность планеты, заставляя их менять направление движения.

Сила лоренца при движении частицы по окружности

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Сила лоренца при движении частицы по окружности

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Сила лоренца при движении частицы по окружности

Что такое ЭДС индукции и когда возникает?

Сила лоренца при движении частицы по окружности

Что такое электрический ток простыми словами

Видео:Действие магнитного поля на движущийся заряд. Сила Лоренца | Физика 11 класс #3 | ИнфоурокСкачать

Действие магнитного поля на движущийся заряд. Сила Лоренца | Физика 11 класс #3 | Инфоурок

Сила Лоренца

теория по физике 🧲 магнетизм

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля → B можно считать неизменным в пределах этого отрезка проводника.

Сила лоренца при движении частицы по окружности

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F = | I | Δ l B sin . α

Подставляя сюда выражение, полученное для силы тока, получим:

F = | q n v S | Δ l B sin . α = | q | n v S Δ l B sin . α

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

F = | q | v N B sin . α

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

F Л = F N . . = | q | v N B sin . α N . . = | q | v B sin . α

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45 o к вектору магнитной индукции.

F Л = | q | v B sin . α = 0 , 005 · 200 · 0 , 3 · √ 2 2 . . ≈ 0 , 2 ( Н )

Видео:сила Лоренца | правило левой руки | физика 11 классСкачать

сила Лоренца | правило левой руки | физика 11 класс

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции → B , перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Сила лоренца при движении частицы по окружности

Пример №2. Протон p имеет скорость → v , направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

Сила лоренца при движении частицы по окружности

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Видео:10 класс. Физика. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

10 класс. Физика. Сила Лоренца. Движение заряженных частиц в магнитном поле

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90 о . Работа любой силы определяется формулой:

Но так как косинус 90 о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Видео:ФИЗИКА С НУЛЯ — Сила Лоренца, Правило Левой рукиСкачать

ФИЗИКА С НУЛЯ — Сила Лоренца, Правило Левой руки

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила → F э л , действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Следовательно, полная сила, действующая на заряд, равна:

→ F = → F э л + → F л = q → E + | q | → v → B sin . α

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна → E . Какова индукция → B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор → E направлен вдоль траектории движения протона. Тогда вектор → B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы → E , → B и → v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Сила лоренца при движении частицы по окружности

Заряд протона равен модулю заряда электрона — e . Сложим силы, действующие на протон по оси ОУ:

В скалярной форме:

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.

🔥 Видео

Физика - движение по окружностиСкачать

Физика - движение по окружности

Движение электронов в магнитном поле - Сила ЛоренцаСкачать

Движение электронов в магнитном поле - Сила Лоренца

55. Движение частиц в электромагнитных поляхСкачать

55. Движение частиц в электромагнитных полях

Сила Лоренца. Движение заряженных частиц в магнитном поле.Скачать

Сила Лоренца. Движение заряженных частиц в магнитном поле.

Урок 278. Задачи на силу Лоренца - 1Скачать

Урок 278. Задачи на силу Лоренца - 1

Использование силы ЛоренцаСкачать

Использование силы Лоренца

Тема 27. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Тема 27. Сила Лоренца. Движение заряженных частиц в магнитном поле

ЕГЭ Сила Лоренца Задание 6 #7Скачать

ЕГЭ Сила Лоренца Задание 6 #7

Сила ЛоренцаСкачать

Сила Лоренца
Поделиться или сохранить к себе: