Шпаргалка по окружности 9 класс

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Шпаргалка по окружности 9 класс

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Шпаргалка по окружности 9 класс

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Как сделать шпаргалку лучший способСкачать

Как сделать шпаргалку лучший способ

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Геометрия 9 класс (Урок№23 - Длина окружности.)Скачать

Геометрия 9 класс (Урок№23 - Длина окружности.)

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:Шпаргалка к 9 классу за 3 минутыСкачать

Шпаргалка к 9 классу за 3 минуты

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:•шпаргалки на 9 класс🫐Скачать

•шпаргалки на 9 класс🫐

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:Шпаргалка Прямая Эйлера, окружность 9 точекСкачать

Шпаргалка  Прямая Эйлера, окружность 9 точек

Необходимый теоретический материал для успешной сдачи ОГЭ-9 по математике для учеников разной подготовленности

Класс: 9

Ключевые слова: математика , ОГЭ

1. Углы

Шпаргалка по окружности 9 класс

Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).

Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).

Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).

Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).

Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.

2. Медиана, биссектриса, высота

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.

3. Треугольник

Сумма углов в любом треугольнике 180˚.

Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.

Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).

Шпаргалка по окружности 9 класс

Равнобедренный треугольник — треугольник, у которого равны две стороны.

Свойства равнобедренного треугольника:

  • в равнобедренном треугольнике углы при основании равны;
  • в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;

Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)

Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.

Три признака равенства треугольников

I признак по двум сторонам и углу между ними

II признак (по стороне и прилежащим углам)

III признак (по трем сторонам)

Признаки подобия треугольников

I признак по двум равным углам

II признак по двум пропорциональным сторонам и углу между ними

III признак по трем пропорциональным сторонам

Площади подобных фигур относятся как коэффициент подобия в квадрате.

Объемы подобных фигур относятся как коэффициент подобия в кубе.

Треугольник называется прямоугольным, если один из его углов прямой.

Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).

Свойства прямоугольного треугольника

Сумма острых углов прямоугольного треугольника равна 90 градусов.

Катет, лежащий против угла в 30˚, равен половине гипотенузы.

Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.

Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².

Пифагоровы тройки:

Признаки равенства прямоугольных треугольников

  • По двум катетам.
  • По гипотенузе и катету.
  • По катету и прилежащему острому углу.
  • По катету и противолежащему острому углу.
  • По гипотенузе и острому углу.

Признаки подобия прямоугольных треугольников:

  • По острому углу.
  • По пропорциональности двух катетов.
  • По пропорциональности катета и гипотенузы.

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.

Высота прямоугольного треугольника: h=ab/c или h =Шпаргалка по окружности 9 класс (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).

В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=​с/2=m​c).

3. Четырехугольники

Сумма углов в любом четырехугольнике 360˚.

Параллелограмм

Шпаргалка по окружности 9 класс

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.

У параллелограмма противолежащие стороны равны и противолежащие углы равны.

Сумма любых двух соседних углов параллелограмма равна 180°.

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Каждая диагональ делит параллелограмм на два равных треугольника.

Две диагонали параллелограмма делят его на четыре равновеликих треугольника.

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Шпаргалка по окружности 9 класс

Ромбом называется параллелограмм, у которого все стороны равны.

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Прямоугольник

Прямоугольником называется параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.

Квадрат.

Квадрат – это прямоугольник, у которого все стороны равны.

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями: Шпаргалка по окружности 9 класс.

Трапеция

Шпаргалка по окружности 9 класс

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Равнобокой называется трапеция, у которой боковые стороны равны.

У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.

Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

4. Окружность

Шпаргалка по окружности 9 класс

Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.

Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.

Прямая, имеющая с окружностью две общие точки, называется секущей.

Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.

Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

Вписанный угол, опирающийся на диаметр равен 90˚.

Все вписанные углы, опирающиеся на одну и туже дугу равны.

Теорема косинусов:

Теорема синусов:

Шпаргалка по окружности 9 класс

5. Формулы площадей

Видео:Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать

Удалили с экзамена ОГЭ Устное Собеседование shorts #shorts

Памятка для подготовки ГИА «Окружность»
методическая разработка по геометрии (9 класс) по теме

Шпаргалка по окружности 9 класс

Памятка ученикам по теме » Окружность»

Видео:ФИЗИКА за 9 класс, все формулы и определения, повторение, ВПР, контрольная, ОГЭ, ЕГЭ, шпаргалка.Скачать

ФИЗИКА за 9 класс, все формулы и определения, повторение, ВПР, контрольная, ОГЭ, ЕГЭ, шпаргалка.

Скачать:

ВложениеРазмер
pamyatka_po_okruzhnosti_gia.doc95.5 КБ

Видео:УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрияСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрия

Предварительный просмотр:

Окружность — фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Отрезок, соединяющий центр с какой-либо точкой окружности, — радиус . Часть плоскости, ограниченная окружностью, называется кругом. Круговой сектор – часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Сегмент — это часть круга, ограниченная дугой и стягивающей ее хордой. Отрезок, соединяющий две точки окружности, называется ее хордой . Хорда, проходящая через центр окружности, — диаметр . Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка — точкой касания прямой и окружности. Свойства касательной: 1) касательная к окружности перпендикулярна к радиусу, проведенному в точку касания; 2) отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Свойства хорд: 1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Св.1 св.2 св.3 2 . Дуги, заключенные между параллельными хордами, равны. 3. Если две хорды окружности AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD. Свойства окружности: 1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ). 2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну. 3. Точка касания двух окружностей лежит на линии, соединяющей их центры. Теорема о касательной и секущей : если из точки, лежащей вне окружности, проведены касательная и секущая , то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB.

Теорема о секущих: Если из точки, лежащей вне окружности, проведены две секущие , то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Центральным углом в окружности называется угол с вершиной в центре окружности. Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность,- вписанный углом . Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью: 1). Вписанный угол равен половине дуги , на которую он опирается , или половине соответствующего ему центрального угла. 2.) Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу , равны.

Св.2 св.3 св.4 длина дуги

3). Вписанный угол , опирающийся на диаметр , равен 90°. 4) Угол , образованный касательной к окружности и секущей , проведенной через точку касания, равен половине дуги, заключенной между его сторонами. Длина окружности C радиуса R вычисляется по формуле: C = 2 R . Площадь S круга радиуса R вычисляется по формуле: S = R 2 . Длина дуги окружности L радиуса R с центральным углом , измеренным в радианах, вычисляется по формуле: L = R Площадь S сектора радиуса R с центральным углом в радиан : S = R 2 .

Вписанные и описанные окружности . Окружность и треугольник

  1. центр вписанной окружности — точка пересечения биссектристреугольника , ее радиус r вычисляется по формуле: r = , где где S — площадь треугольника, а — полупериметр;
  2. центр описанной окружности — точка пересечения серединных перпендикуляров , ее радиус R вычисляется по формуле:

R = , R = ; где a, b, c — стороны, S — площадь треугольника, — угол, лежащий против стороны a ,

  1. центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы ;
  2. центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный .

Окружность и четырехугольники

  1. около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°: + = + = 180°;
  2. в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон: a + c = b + d ;

описана окр. вписана окр.

  1. около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником ;
  2. около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная ; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
  3. в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом .

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

По теме: методические разработки, презентации и конспекты

Шпаргалка по окружности 9 класс

ПАМЯТКА по подготовке домашних заданий

1. Особо важно твердо установленное время начала домашних занятий. Этим вырабатывается привычка и к этому часу появляется психологическая готовность к умственной работе, даже теряется интерес к игре. .

Памятки для подготовки к ЕГЭ

Памятки для учащихся для подготовки к ЕГЭ.

Шпаргалка по окружности 9 класс

ГИА обществознание Памятка для подготовки

Предназначена как для учащихся, так и для учителей при подготовке к сдаче ГИА.

Шпаргалка по окружности 9 класс

Памятка для подготовки к уроку географии и критерии оценки ЗУН

Данная памятка поможет каждому ученику быть готовым к уроку географии, а его родителям контролировать степень готовности. Знание критериев оценивания знаний, умений и навыков учащихся способствует бол.

Памятка выпускникам (подготовка к ЕГЭ по информатике)

файл содержит полезные ссылки и список литературы, а так же советы по сдаче ЕГЭ по информатике.

Шпаргалка по окружности 9 класс

Памятка для подготовки ГИА «Параллельные прямые, подобие»

Краткая основная теория для повторения по геометрии «Параллельные прямые, подобие».

Шпаргалка по окружности 9 класс

Памятка для подготовки ГИА «Четырехугольники»

Памятка для подготовки ГИА «Четырехугольники» для решения задач модуля геометрии первой части.

📹 Видео

Площадь сектора и сегмента. 9 класс.Скачать

Площадь сектора и сегмента. 9 класс.

Круг и окружность #геометрия #математика #теория #шпаргалкаСкачать

Круг и окружность #геометрия #математика #теория #шпаргалка

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Длина окружности. Практическая часть. 9 класс.Скачать

Длина окружности. Практическая часть. 9 класс.

Длина дуги окружности. Практическая часть. 9 класс.Скачать

Длина дуги окружности. Практическая часть. 9 класс.

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

9 класс, 26 урок, Длина окружностиСкачать

9 класс, 26 урок, Длина окружности
Поделиться или сохранить к себе: