Серединные перпендикуляры треугольника вписанного в окружность

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Серединные перпендикуляры треугольника вписанного в окружностьСерединный перпендикуляр к отрезку
Серединные перпендикуляры треугольника вписанного в окружностьОкружность описанная около треугольника
Серединные перпендикуляры треугольника вписанного в окружностьСвойства описанной около треугольника окружности. Теорема синусов
Серединные перпендикуляры треугольника вписанного в окружностьДоказательства теорем о свойствах описанной около треугольника окружности

Серединные перпендикуляры треугольника вписанного в окружность

Содержание
  1. Серединный перпендикуляр к отрезку
  2. Окружность, описанная около треугольника
  3. Свойства описанной около треугольника окружности. Теорема синусов
  4. Доказательства теорем о свойствах описанной около треугольника окружности
  5. Треугольник вписанный в окружность
  6. Определение
  7. Формулы
  8. Радиус вписанной окружности в треугольник
  9. Радиус описанной окружности около треугольника
  10. Площадь треугольника
  11. Периметр треугольника
  12. Сторона треугольника
  13. Средняя линия треугольника
  14. Высота треугольника
  15. Свойства
  16. Доказательство
  17. math4school.ru
  18. Треугольники
  19. Основные свойства
  20. Равенство треугольников
  21. Подобие треугольников
  22. Медианы треугольника
  23. Биссектрисы треугольника
  24. Высоты треугольника
  25. Серединные перпендикуляры
  26. Окружность, вписанная в треугольник
  27. Окружность, описанная около треугольника
  28. Расположение центра описанной окружности
  29. Равнобедренный треугольник
  30. Равносторонний треугольник
  31. Прямоугольный треугольник
  32. Вневписанные окружности
  33. Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Видео:Треугольник, вписанный в окружность геометрия 7 классСкачать

Треугольник, вписанный в окружность геометрия 7 класс

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Серединные перпендикуляры треугольника вписанного в окружность

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Серединные перпендикуляры треугольника вписанного в окружность

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Серединные перпендикуляры треугольника вписанного в окружность

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединные перпендикуляры треугольника вписанного в окружность

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Полученное противоречие и завершает доказательство теоремы 2

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Серединные перпендикуляры треугольника вписанного в окружность,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Серединные перпендикуляры треугольника вписанного в окружность

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Серединные перпендикуляры треугольника вписанного в окружностьВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаСерединные перпендикуляры треугольника вписанного в окружностьОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиСерединные перпендикуляры треугольника вписанного в окружностьЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиСерединные перпендикуляры треугольника вписанного в окружностьЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовСерединные перпендикуляры треугольника вписанного в окружность
Площадь треугольникаСерединные перпендикуляры треугольника вписанного в окружность
Радиус описанной окружностиСерединные перпендикуляры треугольника вписанного в окружность
Серединные перпендикуляры к сторонам треугольника
Серединные перпендикуляры треугольника вписанного в окружность

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаСерединные перпендикуляры треугольника вписанного в окружность

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиСерединные перпендикуляры треугольника вписанного в окружность

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиСерединные перпендикуляры треугольника вписанного в окружность

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиСерединные перпендикуляры треугольника вписанного в окружность

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовСерединные перпендикуляры треугольника вписанного в окружность

Для любого треугольника справедливы равенства (теорема синусов):

Серединные перпендикуляры треугольника вписанного в окружность,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаСерединные перпендикуляры треугольника вписанного в окружность

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиСерединные перпендикуляры треугольника вписанного в окружность

Для любого треугольника справедливо равенство:

Серединные перпендикуляры треугольника вписанного в окружность

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Серединные перпендикуляры в треугольникеСкачать

Серединные перпендикуляры в треугольнике

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Серединные перпендикуляры треугольника вписанного в окружность

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Серединные перпендикуляры треугольника вписанного в окружность

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Окружность || Часть 4 || Треугольник, вписанный в окружностьСкачать

Окружность || Часть 4 || Треугольник, вписанный в окружность

Треугольник вписанный в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольникаСкачать

Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольника

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)Скачать

Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Серединные перпендикуляры треугольника вписанного в окружность

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

math4school.ru

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Треугольники

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Основные свойства

Серединные перпендикуляры треугольника вписанного в окружность

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.

Сумма углов треугольника равна 180°:

Серединные перпендикуляры треугольника вписанного в окружность

Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:

Серединные перпендикуляры треугольника вписанного в окружность

Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:

Серединные перпендикуляры треугольника вписанного в окружность

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна её половине:

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Равенство треугольников

Серединные перпендикуляры треугольника вписанного в окружность

Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:

Серединные перпендикуляры треугольника вписанного в окружность

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

Серединные перпендикуляры треугольника вписанного в окружность

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Третий признак равенства треугольников.

Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Серединные перпендикуляры к сторонам треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Серединные перпендикуляры к сторонам треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Подобие треугольников

Серединные перпендикуляры треугольника вписанного в окружность

Подобными называются треугольники, у которых соответствующие стороны пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия:

Серединные перпендикуляры треугольника вписанного в окружность

Два треугольника подобны, если:

  • Два угла одного треугольника равны двум углам другого треугольника.
  • Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны.
  • Стороны одного треугольника пропорциональны сторонам другого.

У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:

Серединные перпендикуляры треугольника вписанного в окружность

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Серединные перпендикуляры треугольника вписанного в окружность

Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:

Серединные перпендикуляры треугольника вписанного в окружность

Видео:ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикулярСкачать

ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикуляр

Медианы треугольника

Серединные перпендикуляры треугольника вписанного в окружность

Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:

Серединные перпендикуляры треугольника вписанного в окружность

  • Медиана делит треугольник на два равновеликих (с равными площадями) треугольника.
  • Три медианы треугольника делят его на шесть равновеликих треугольников:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Длины медиан, проведённых к соответствующим сторонам треугольника, равны:

Серединные перпендикуляры треугольника вписанного в окружность

Видео:8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать

8 класс, 36 урок, Свойства серединного перпендикуляра к отрезку

Биссектрисы треугольника

Серединные перпендикуляры треугольника вписанного в окружность

Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.

Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.

Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:

Серединные перпендикуляры треугольника вписанного в окружность

Длина биссектрисы угла А :

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.

Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

BL – биссектриса угла В ;

ВЕ – биссектриса внешнего угла СВК :

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Построение серединных перпендикуляров треугольника с помощью циркуляСкачать

Построение серединных перпендикуляров треугольника с помощью циркуля

Высоты треугольника

Серединные перпендикуляры треугольника вписанного в окружность

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Высоты треугольника обратно пропорциональны его сторонам:

Серединные перпендикуляры треугольника вписанного в окружность

Длина высоты, проведённой к стороне а :

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать

Описанная и вписанная окружности треугольника - 7 класс геометрия

Серединные перпендикуляры

Серединные перпендикуляры треугольника вписанного в окружность

Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.

Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.

Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Окружность, вписанная в треугольник

Серединные перпендикуляры треугольника вписанного в окружность

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:

Серединные перпендикуляры треугольника вписанного в окружность

Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:

Серединные перпендикуляры треугольника вписанного в окружность

Видео:Окружность и треугольникСкачать

Окружность и треугольник

Окружность, описанная около треугольника

Серединные перпендикуляры треугольника вписанного в окружность

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Радиус описанной окружности:

Серединные перпендикуляры треугольника вписанного в окружность

Расположение центра описанной окружности

Серединные перпендикуляры треугольника вписанного в окружностьСерединные перпендикуляры треугольника вписанного в окружностьСерединные перпендикуляры треугольника вписанного в окружностьЦентр описанной окружности остроугольного треугольника расположен внутри треугольника.Центр описанной окружности прямоугольного треугольника совпадает с серединой его гипотенузы.Центр описанной окружности тупоугольного треугольника расположен вне треугольника.

Равнобедренный треугольник

Серединные перпендикуляры треугольника вписанного в окружность

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.

Серединные перпендикуляры треугольника вписанного в окружность

Основные формулы для равнобедренного треугольника:

Серединные перпендикуляры треугольника вписанного в окружность

Равносторонний треугольник

Серединные перпендикуляры треугольника вписанного в окружность

Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Все углы равностороннего треугольника равны:

Серединные перпендикуляры треугольника вписанного в окружность

Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:

Серединные перпендикуляры треугольника вписанного в окружность

Основные соотношения для элементов равностороннего треугольника

Серединные перпендикуляры треугольника вписанного в окружность

Прямоугольный треугольник

Серединные перпендикуляры треугольника вписанного в окружность

Треугольник называется прямоугольным, если у него есть прямой угол.

Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Прямоугольные треугольники равны если у них равны:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.
  • одному острому углу;
  • из пропорциональности двух катетов;
  • из пропорциональности катета и гипотенузы.

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:

Серединные перпендикуляры треугольника вписанного в окружность

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:

Серединные перпендикуляры треугольника вписанного в окружность

Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:

Серединные перпендикуляры треугольника вписанного в окружность

Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:

Серединные перпендикуляры треугольника вписанного в окружность

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:

Серединные перпендикуляры треугольника вписанного в окружность

Площадь прямоугольного треугольника можно определить

через катеты: Серединные перпендикуляры треугольника вписанного в окружность

через катет и острый угол: Серединные перпендикуляры треугольника вписанного в окружность

через гипотенузу и острый угол: Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Центр описанной окружности совпадает с серединой гипотенузы.

Радиус описанной окружности:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

Радиус вписанной окружности:

Серединные перпендикуляры треугольника вписанного в окружность

Вневписанные окружности

Серединные перпендикуляры треугольника вписанного в окружность

Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.

Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Так точка О1 , центр одной из вневписанных окружностей Δ ABC , лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C .

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.

Δ ABC является ортоцентричным в Δ О1О2О3 (точки A , B и C – основания высот в Δ О1О2О3 ).

В Δ ABC углы равны 180°–2 О1 , 180°–2 О2 , 180°–2 О3 .

Радиус окружности, описанной около Δ О1О2О3 , равен 2 R , где R – радиус окружности, описанной около Δ ABC .

Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .

Если ra , rb , rс – радиусы вневписанных окружностей в Δ ABC , то в Δ ABC верно:

для rСерединные перпендикуляры треугольника вписанного в окружность

для R – Серединные перпендикуляры треугольника вписанного в окружность

для S – Серединные перпендикуляры треугольника вписанного в окружность

для самих ra , rb , rсСерединные перпендикуляры треугольника вписанного в окружность

Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Серединные перпендикуляры треугольника вписанного в окружность

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Серединные перпендикуляры треугольника вписанного в окружность

Серединные перпендикуляры треугольника вписанного в окружность

  • если c 2 > a 2 +b 2 , то угол γ – тупой ( cos γ
  • если c 2 2 +b 2 , то угол γ – острый ( cos γ > 0 );
  • если c 2 = a 2 +b 2 , то угол γ – прямой ( cos γ = 0 ).

Серединные перпендикуляры треугольника вписанного в окружность

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:

Серединные перпендикуляры треугольника вписанного в окружность

Теорема тангенсов (формула Региомонтана):

Поделиться или сохранить к себе: