S равнобедренного треугольника через синус

Площадь равнобедренного треугольника — формулы вычисления

Площадь равнобедренного треугольника важна для вычисления многих геометрических и математических задач. Например, определение площади любого многоугольника связано с его разделением на ряд треугольников и расчетом площади каждого из них.

Геометрическое тело, обладающее двумя равными сторонами и углами – есть частный случай простого разностороннего многоугольника.

Каждая из идентичных линий называется боковой, а третья – основанием.

S равнобедренного треугольника через синус

Если в таком треугольнике опустить среднюю линию из его вершины на 3-ю сторону, то образовавшиеся два плоских тела будут идентичны (так как имеют все признаки подобия).

Площадь (S) фигуры с тремя углами возможно установить:

по двум сторонам и высоте;

через угол между двумя сторонами и величину одной из них;

по двум сторонам;

через синус противолежащего основанию угла;

зная синус прилежащего угла и др.

Содержание
  1. Площадь равнобедренного треугольника через высоту
  2. Площадь равнобедренного треугольника через стороны
  3. Площадь равнобедренного треугольника через синус угла
  4. Формула площади равнобедренного треугольника через тангенс угла
  5. Как найти площадь треугольника
  6. По формуле Герона
  7. Через основание и высоту
  8. Через две стороны и угол
  9. Через сторону и два прилежащих угла
  10. Площадь прямоугольного треугольника
  11. Площадь равнобедренного треугольника через стороны
  12. Площадь равнобедренного треугольника через основание и угол
  13. Площадь равностороннего треугольника через стороны
  14. Площадь равностороннего треугольника через высоту
  15. Площадь равностороннего треугольника через радиус вписанной окружности
  16. Площадь равностороннего треугольника через радиус описанной окружности
  17. Площадь треугольника через радиус описанной окружности и три стороны
  18. Площадь треугольника через радиус вписанной окружности и три стороны
  19. Площадь треугольника через синус
  20. Определение
  21. Введение
  22. Теорема
  23. Формула
  24. Пример
  25. Доказательство
  26. Заключение
  27. 📺 Видео

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Площадь равнобедренного треугольника через высоту

Вычисление площади треугольника с использованием его высоты и параметров основания – самый актуальный вариант, на базе которого строятся многие другие методы решения.

У планиметрической фигуры с двумя тождественными углами и боковыми отрезками высота может рассматриваться, как медиана и биссектриса. То есть линия, проведенная из вершины, делит планиметрический объект на два эквивалентных прямоугольных треугольника.

И общая их площадь сводится к:

S равнобедренного треугольника через синус

b — размер основания;

Требуется рассчитать S тупоугольного равнобедренного многоугольника. Его h=3 см, а длина b = 8 см.

Вычисления выглядят следующим образом:

S равнобедренного треугольника через синус

Видео:Вывод синуса двойного угла через площадь равнобедренного треугольника #егэ2024Скачать

Вывод синуса двойного угла через площадь равнобедренного треугольника  #егэ2024

Площадь равнобедренного треугольника через стороны

Найти S планиметрического тела с двумя одинаковыми чертами, зная их параметры, возможно.

Для этого необходима теорема Пифагора, формулы которой видны на картинке,

S равнобедренного треугольника через синус

и формула для отыскания S через биссектрису S = ½ * b * h.

После проведения медианы к середине 3-его отрезка, в равнобедренном треугольнике образуются 2 единообразных плоских тела с h между 2-мя катетами.

Таким образом, используя свойство сторон прямоугольного треугольника, выводим формулу, которая показана на картинке:

S равнобедренного треугольника через синус

При высчитывание S равностороннего треугольника это выражение примет другой вид. Сравнить формулы нахождения площади равностороннего и равнобедренного треугольников можно, взглянув на картинку:

S равнобедренного треугольника через синус

У остроугольного равнобедренного треугольника даны габариты боковины b = 3 см и базиса a = 2 см. Надлежит найти его S:

S равнобедренного треугольника через синус

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Площадь равнобедренного треугольника через синус угла

В геометрии встречаются задания по отысканию площади многоугольника с тремя схожими краями через данный угол и длину прилегающей стороны.

В этой ситуации определение размера h будет осуществляться с использованием угла, прилегающего к измеренной грани. Таким образом выводится выражение, которое хорошо иллюстрирует следующая картинка:

S равнобедренного треугольника через синус

Посмотрим на рисунок, приведенный выше. Известно, что ∠ACB фигуры 30 градусов, а величина его боковой стороны AC = AB равняется 4 см. Требуется вычислить её S.

S равнобедренного треугольника через синус

Видео:Площадь равнобедренного треугольникаСкачать

Площадь равнобедренного треугольника

Формула площади равнобедренного треугольника через тангенс угла

Как правило, в планиметрии нередко встречаются задания по нахождению S треугольника, в котором определено значение стороны и угол.

S равнобедренного треугольника через синус

Разнообразные равенства для решения задач, в том числе и нахождения S через тангенс угла, можно увидеть ниже:

S равнобедренного треугольника через синус

Дан равнобедренный треугольник OPQ (см. рис. 1). Известны величины: основание OQ = 5 см и угол QOP = 45 0 . Требуется найти площадь треугольника OPQ.

Прежде всего посмотрим, как найти нам требуемую величину и какую применить формулу. Остановим свой выбор на формуле нахождения площади S по тангенсу угла.

S равнобедренного треугольника через синус

Зная, что у нас равнобедренный треугольник, у которого углы у основания равны, найдем третий угол:

180 — 45 — 45 = 90 0 — угол OPQ.

SOPQ = 5 2 /4 * tg 45° = 25/4 * 1 = 6, 25 см 2

Вот так, используя прежде всего знания о свойствах фигур, можно получать самые разнообразные способы вычисления той величины, какая требуется в задаче.

Видео:ВЫСОТА через СИНУС / равнобедренный треугольник / #планиметрия #27327Скачать

ВЫСОТА через СИНУС / равнобедренный треугольник / #планиметрия #27327

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона

S равнобедренного треугольника через синус

Формула Герона для нахождения площади треугольника:

Через основание и высоту

S равнобедренного треугольника через синус

Формула нахождения площади треугольника с помощью половины его основания и высоту:

Через две стороны и угол

S равнобедренного треугольника через синус

Формула нахождения площади треугольника через две стороны и угол между ними:

Через сторону и два прилежащих угла

S равнобедренного треугольника через синус

Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:

Площадь прямоугольного треугольника

S равнобедренного треугольника через синус

Прямоугольный треугольник — треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

Площадь равнобедренного треугольника через стороны

S равнобедренного треугольника через синус

Равнобедренный треугольник — треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

Площадь равнобедренного треугольника через основание и угол

S равнобедренного треугольника через синус

Формула нахождения площади равнобедренного треугольника через основание и угол:

Площадь равностороннего треугольника через стороны

S равнобедренного треугольника через синус

Равносторонний треугольник — треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

Площадь равностороннего треугольника через высоту

S равнобедренного треугольника через синус

Формула нахождения площади равностороннего треугольника через высоту:

Площадь равностороннего треугольника через радиус вписанной окружности

S равнобедренного треугольника через синус

Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

Площадь равностороннего треугольника через радиус описанной окружности

S равнобедренного треугольника через синус

Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

Площадь треугольника через радиус описанной окружности и три стороны

S равнобедренного треугольника через синус

Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

Площадь треугольника через радиус вписанной окружности и три стороны

S равнобедренного треугольника через синус

Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Площадь треугольника через синус

S равнобедренного треугольника через синус

Видео:№490. Найдите боковую сторону и площадь равнобедренного треугольника, если: а) основание равноСкачать

№490. Найдите боковую сторону и площадь равнобедренного треугольника, если: а) основание равно

Определение

Площадь треугольника через синус — это площадь треугольника,
выраженная через две любые стороны треугольника и синус угла между ними.

Синус угла — это число, которое используется для нахождения
разных величин в треугольниках, его можно найти в специальных таблицах.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Введение

Площадь треугольника кроме половины произведения высоты
на основания, можно также найти и другим способом.
Мало кто знает, но через синусы углов можно найти обычно
не только стороны, но и площадь любого треугольника!

Площадь треугольника выраженная без синуса численно равна
половине произведения двух сторон друг на друга
на синус угла между ними.

Площадь треугольника через синус ищется только в том случае,
если по другой формуле площадь треугольника найти нельзя.

Теорема

S равнобедренного треугольника через синус

( S = frac2 * BC * AC * sin angle BCA ) ​

Площадь произвольного треугольника равна полусумме
произведения двух любых сторон треугольника друг на друга,
и на синус угла между этими сторонами.

Формула

[ S = frac2 * a * b * sin α ]

Где a, b — две стороны треугольника, синус α — синус угла α.

Пример

S равнобедренного треугольника через синус

Для примера, возьмем треугольник omk, изображенный на рисунке 1, со сторонами om, mk, ok.
Известно, что mk равен 6, ok равен 8, синус угла okm равен 1/4.

Нужно найти площадь треугольника omk.

Дано: △omk, mk = 6, ok = 8, sin okm = 1/4.

Найти: S △omk — ?

Решение:

1) ​ ( S = frac2*a*b*sin α ) ​​ ( implies ) ​ ( S = frac2*mk*ok*sin okm ) ​

2) S = 1/2 * 6 * 8 * 1/4 = 1/2 * 6 * 8 * 0.25 = 1/2 * 48 * 0.25 = 1/2 * 12 = 6

Ответ: Площадь треугольника omk равна 6.

Доказательство

Докажем, что площадь произвольного треугольника
равна полусумме произведения двух любых сторон
друг на друга, и на синус угла между этими сторонами.

Чтобы вам наглядно было видно, как мы доказываем,
используем один из известнейших треугольников — египетский треугольник.
Высота в египетском треугольнике равна длине одного из катетов.
Построим прямоугольный треугольник, изображенный на рисунке 2,
со сторонами 3,4,5 с одним из углов 90 градусов.

S равнобедренного треугольника через синус

Первым делом найдем площадь обычной формулой,
затем с помощью синуса. Площадь равна половине
основания на высоту — ½3*4 = 6. Теперь найдем с
помощью синуса: ½3*4*sin90 = 6 * 1 = 6. Как видим,
полученные значения площадей сходятся, соответственно
через синус можно найти площадь треугольника ч.т.д.

Теперь, чтобы найти площадь треугольника нам не нужно
знать основание и высоту, можно знать только
две стороны и синус угла между ними.

Видео:№598. Найдите площадь равнобедренного треугольника с углом а при основании, еслиСкачать

№598. Найдите площадь равнобедренного треугольника с углом а при основании, если

Заключение

В заключение, можно сказать, что площадь
треугольника можно найти разными способами.
Например, в прямоугольном треугольнике площадь
рассчитать легче чем в любом другом треугольнике,
так как высота уже известна. Именно поэтому,
в школьном курсе, отчасти так подробно изучаются
прямоугольные треугольники. В Древнем Египте были
распространены прямоугольные треугольники со
сторонами 3,4,5; 6,8,10; 5,12,13. Длины этих прямоугольных
треугольников треугольников целые, что значительно,
упрощало разного рода вычисления.

Формулу площади треугольника делает универсальной то,
что она может применена к абсолютно любым треугольникам.
Главное, чтобы были известные две стороны,
и угол или синус угла между ними.

Формула площади треугольника через синус — универсальна,
поэтому может быть применена к любым видам треугольников.

📺 Видео

Площадь равнобедренного треугольника для фанатов Dark Souls и для всех остальных #огэ2023 #егэ2023Скачать

Площадь равнобедренного треугольника для фанатов Dark Souls и для всех остальных #огэ2023 #егэ2023

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Площадь равнобедренного треугольника равна √3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

Площадь равнобедренного треугольника равна √3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

Площадь равнобедренного треугольникаСкачать

Площадь равнобедренного треугольника

Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10.Скачать

Найдите площадь равнобедренного треугольника, основание которого равно 12 см, а боковая сторона 10.

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Площадь треугольника по полупроизведению сторон на синус угла между нимиСкачать

Площадь треугольника по полупроизведению сторон на синус угла между ними

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

16 заание ОГЭ . 16.3.4. Равнобедренные треугольникиСкачать

16 заание ОГЭ . 16.3.4. Равнобедренные треугольники

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника
Поделиться или сохранить к себе: