Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность
Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.
Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.
Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.
Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности
- Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
- В любой треугольник можно вписать окружность, и только одну.
- Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac
$$ , где S — площадь треугольника, а $$p =frac$$ — полупериметр треугольника.
Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.
Окружность называется описанной около треугольника, если она проходит через три его вершины.
- Вокруг любого треугольника можно описать окружность, и только одну.
- В любом треугольнике сторона равна произведению диаметра описанной окружности и синуса противолежащего угла.
- Площадь треугольника равна отношению произведения длин всех его сторон к учетверенному радиусу окружности, описанной около этого треугольника: $$R =frac$$, где S — площадь треугольника.
- Центр вневписанной окружности лежит на пересечении биссектрис внешних углов, при вершинах касаемой стороны, и биссектрисы угла при третей вершине.
Окружность, вписанная в прямоугольный треугольник
- Радиус вписанной окружности находят по формулам: $$r = frac$$, и $$r = frac$$, где a и b катеты прямоугольного треугольника, а c гипотенуза прямоугольного треугольника.
Окружность, описанная около прямоугольного треугольника
- Центр описанной окружности совпадает с серединой гипотенузы.
- Радиус равен половине гипотенузы: $$R = frac$$.
- Радиус равен медиане, проведенной к гипотенузе: $$R = m_$$.
Четырехугольник, вписанный в окружность
- Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + beta + gamma +delta = 180^circ$$.
- Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
- Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
- Площадь: $$S = sqrt$$, где $$p = frac$$ — полупериметр четырехугольника.
Окружность, вписанная в ромб
- В любой ромб можно вписать окружность.
- Радиус r вписанной окружности: $$r = frac$$, где h — высота ромба или $$r = frac <d_cdot d_>$$, где a — сторона ромба, d1 и d2 — диагонали ромба.
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Описанная и вписанная окружность
теория по математике 📈 планиметрия
Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Описанная окружность
Окружность называется описанной вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется вписанным в окружность.
Любой правильный многоугольник можно вписать в окружность. На рисунке описанная окружность проходит через каждую вершину правильного шестиугольника.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Вписанная окружность
Окружность называется вписанной в многоугольник, если она касается всех его сторон. Многоугольник в этом случае называется описанным около окружности.
В любой правильный многоугольник можно вписать окружность. На рисунке окружность вписана в правильный шестиугольник, она касается всех его сторон.
Вписанный и описанный треугольники
Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров, проведенных к сторонам треугольника.
В любой треугольник можно вписать окружность: Центр вписанной окружности
Центр окружности, вписанной в треугольник, лежит на пересечении его биссектрис.
Вписанный и описанный четырехугольники
Не во всякий четырехугольник можно вписать окружность. Например, в прямоугольник нельзя вписать окружность. По рисунку видно, что окружность касается только трех его сторон, что не соответствует определению.
Условие вписанной в 4-х угольник окружности
Окружность является вписанной в четырехугольник, если суммы длин противоположных сторон равны.
На рисунке выполняется данное условие, то есть AD + BC=DC + AB
Окружность является описанной около четырехугольника, если суммы противоположных углов равны 180 градусов.
На рисунке окружности описана около четырехугольника, следовательно выполнено условие, что сумма углов А и С равна сумме углов B и D и равна 180 градусов.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанные и описанные окружности
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом занятии мы изучим вписанные и описанные окружности. Для начала дадим определение вписанной окружности, поговорим об ее основных свойствах. Также рассмотрим варианты описанной окружности, перечислим ее главные свойства. Используя полученные сведения, вместе с преподавателем решим несколько примеров на эту тему.
🌟 Видео
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Вписанная и описанная окружности. ЗадачиСкачать
Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольникаСкачать
Вписанная и описанная окружностиСкачать
Геометрия 6. Радиусы вписанной и описанной окружностей.Скачать
Построить описанную окружность (Задача 1)Скачать
8 класс, 38 урок, Вписанная окружностьСкачать
Радиус описанной окружностиСкачать
Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
М1152. Расстояние между центрами вписанной и описанной окружностейСкачать
ОПИСАННАЯ и ВПИСАННАЯ окружности. §21 геометрия 7 классСкачать
Вписанная и описанная около равнобедренного треугольника, окружностьСкачать