Расчет вписать квадрат в окружность

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Расчет вписать квадрат в окружность

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:Как построить квадрат, два способаСкачать

Как построить квадрат, два способа

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Расчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружность

Видео:Как вписать квадрат в окружностьСкачать

Как вписать квадрат в окружность

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Расчет вписать квадрат в окружность

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Расчет вписать квадрат в окружность
Расчет вписать квадрат в окружность.(1)

Из равенства (1) найдем d:

Расчет вписать квадрат в окружность.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:Площадь круга. Математика 6 класс.Скачать

Площадь круга. Математика 6 класс.

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Расчет вписать квадрат в окружность

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Расчет вписать квадрат в окружность(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:ВПИСАТЬ И ОПИСАТЬ квадрат в окружность, окружность в квадратСкачать

ВПИСАТЬ И ОПИСАТЬ квадрат в окружность, окружность в квадрат

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Расчет вписать квадрат в окружность(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Расчет вписать квадрат в окружность

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Расчет вписать квадрат в окружность
Расчет вписать квадрат в окружность(5)

Из формулы (5) найдем R:

Расчет вписать квадрат в окружность
Расчет вписать квадрат в окружность(6)

или, умножая числитель и знаменатель на Расчет вписать квадрат в окружность, получим:

Расчет вписать квадрат в окружность.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Расчет вписать квадрат в окружность
Расчет вписать квадрат в окружность.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Расчет вписать квадрат в окружностьНайти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Расчет вписать квадрат в окружностьв (8), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Расчет вписать квадрат в окружность(9)

где Расчет вписать квадрат в окружность− сторона квадрата.

Пример 6. Сторона квадрата равен Расчет вписать квадрат в окружность. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Расчет вписать квадрат в окружностьв (9), получим:

Расчет вписать квадрат в окружность

Ответ: Расчет вписать квадрат в окружность

Видео:Любой квадрат можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Любой квадрат можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Расчет вписать квадрат в окружность

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Расчет вписать квадрат в окружность

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Расчет вписать квадрат в окружность(10)

Так как AD и BC перпендикулярны, то

Расчет вписать квадрат в окружностьРасчет вписать квадрат в окружность(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Расчет вписать квадрат в окружность(12)

Эти реугольники также равнобедренные. Тогда

Расчет вписать квадрат в окружностьРасчет вписать квадрат в окружность(13)

Из (13) следует, что

Расчет вписать квадрат в окружность(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Расчет вписать квадрат в окружность

Видео:Построение правильного квадрата.Скачать

Построение правильного квадрата.

Онлайн калькулятор длины стороны вписанного в круг квадрата. Как узнать длину стороны вписанного в круг квадрата.

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружность

Расчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружностьРасчет вписать квадрат в окружность

Вычислить длину стороны вписанного квадрата через:Радиус круга R:

Для того что бы найти длину стороны вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.

Расчет вписать квадрат в окружность

Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:

  1. либо площадь круга, обозначаемая буквой S,
  2. либо периметр круга, обозначаемый буквой P,
  3. либо радиус круга, обозначаемый буквой R,
  4. либо диаметр круга, обозначаемый буквой D.

Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой

Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга

1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,

мы можем узнать длину сторон квадрата используя теорему Пифагора

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Радиус вписанной окружности квадрата

Расчет вписать квадрат в окружность

Видео:№1123. Из круга радиуса r вырезан квадрат, вписанный в окружность, которая ограничивает кругСкачать

№1123. Из круга радиуса r вырезан квадрат, вписанный в окружность, которая ограничивает круг

Свойства

Радиус вписанной в квадрат окружности проходит параллельно его стороне, и составляет ровно половину от нее, поэтому умножив его на два, получим сторону квадрата. (рис. 69.2) a=2r

Найти периметр и площадь квадрата через радиус вписанной окружности можно, подставив в формулы вместо стороны удвоенный радиус. P=4a=8r S=a^2=〖(2r)〗^2=4r^2

Диагональ квадрата равна его стороне, умноженной на корень из двух (по теореме Пифагора), если использовать вместо стороны удвоенное значение радиуса, то получится радиус, умноженный на два корня из двух. d=√2 a=2√2 r

Углы квадрата, образованные диагоналями, остаются неизменными во всех случаях и равны между собой. (рис. 69.1) m(

Радиус описанной вокруг квадрата окружности через радиус вписанной окружности выводится с помощью формулы со стороной, вместо которой подставляется удвоенный радиус. При сокращении коэффициенты дают в итоге два в минус второй степени. R=a/√2=2r/√2=r/√2

💡 Видео

Квадрат в окружности или окружность в квадрате #ShortsСкачать

Квадрат в окружности или окружность в квадрате #Shorts

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематика

Построение 8 угольника циркулемСкачать

Построение 8 угольника циркулем

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Euclidea - 1. Альфа (Alpha) - 1.7 - Квадрат, вписанный в окружностьСкачать

Euclidea - 1. Альфа (Alpha) - 1.7 - Квадрат, вписанный в окружность

Лучший способ найти площадь кругаСкачать

Лучший способ найти площадь круга

ПЛОЩАДЬ КРУГА. ЛАЙФХАК #math #логика #загадка #математика #геометрияСкачать

ПЛОЩАДЬ КРУГА. ЛАЙФХАК   #math #логика #загадка #математика #геометрия
Поделиться или сохранить к себе: