Задание 6. Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу этого треугольника.
Если прямоугольный треугольник вписан в окружность, то его гипотенуза AB всегда будет лежать на диаметре окружности, следовательно, она равна двум радиусам описанной окружности:
.
- Радиус вписанной окружности в прямоугольный треугольник онлайн
- 1. Радиус вписанной в прямоугольный треугольник окружности, если известны катеты треугольника
- 2. Радиус вписанной в прямоугольный треугольник окружности, если известны катет и прилегающей к нему острый угол
- 3. Радиус вписанной в прямоугольный треугольник окружности, если известны катет и противолежащий острый угол
- Узнать ещё
- Окружность, вписанная в прямоугольный треугольник
- 📹 Видео
Видео:Радиус окружности, описанной около прямоугольного треугольника, равен 4. Найдите гипотенузу.Скачать
Радиус вписанной окружности в прямоугольный треугольник онлайн
С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в прямоугольный треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
1. Радиус вписанной в прямоугольный треугольник окружности, если известны катеты треугольника
Пусть известны катеты a и b прямоугольного треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.
Радиус вписанной в треугольник окружности, если известна площадь треугольника S и полупериметр p вычисляется из следующей формулы (статья Радиус вписанной в треугольник окружности, формула (5)):
( small r= frac, ) | (1) |
( small p= frac. ) | (2) |
Площадь прямоугольного треугольника по катетам вычисляется из формулы:
( small S= large frac small cdot a cdot b. ) | (3) |
Подставляя (2) и (3) в (1) получим формулу вписанной в прямоугольный треугольник окружности:
( small r= large frac<fracab><frac(a+b+c)> ) ( small = large frac, ) | (4) |
( small c= sqrt. ) | (5) |
Из формулы (4) выведем другую эквивалентную формулу. Умножим числитель и знаменатель формулы (4) на ( small a+b-c ):
( small r= frac ) ( small = frac ) ( small = frac ) | (6) |
Учитывая (5), формулу (6) можно переписать так:
( small r= frac ) ( small = frac .) |
Таким образом другая формула вычисления радиуса вписанной в треугольник окружности имеет вид:
( small r= frac ,) | (7) |
где c вычисляется из (5).
Пример 1. Известны катеты прямоугольного треугольника a=17 и b=5. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (4) и (7). Вычислим, сначала, гипотенузу прямоугольного треугольника из формулы (5):
Подставим значения ( small a=17, ; b=5; c=17.720045 ) в (7):
Ответ:
Видео:Найдите гипотенузуСкачать
2. Радиус вписанной в прямоугольный треугольник окружности, если известны катет и прилегающей к нему острый угол
Пусть известны катет a прямоугольного треугольника и прилежащий к нему угол β(Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.
( small frac=frac .) |
Учитывая, что ( small alpha=90°-beta ) и ( small sin (90°-beta)=cos beta ), получим:
( small frac=frac ) ( small =frac=frac .) | (8) |
Тогда из (8) получим:
( small b=frac. ) | (9) |
Далее, из теоремы синусов:
( small frac=frac ) ( small =frac=frac .) |
( small c=frac .) | (10) |
Чтобы получить формулу радиуса вписанной в прямоугольный треугольник окружности через катет и прилежащий к нему угол, подставим значения ( small b ) и ( small c ) из (9) и (10) в (7):
(11) |
Пример 2. Известны катет ( small a=21 ) и прилежащий к нему угол ( small beta=30° ) прямоугольного треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11). Подставим значения ( small a=21 ) ( small beta=30° ) в (11):
Ответ:
Видео:№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенузаСкачать
3. Радиус вписанной в прямоугольный треугольник окружности, если известны катет и противолежащий острый угол
Пусть известны катет a прямоугольного треугольника и противолежащий угол ( small alpha; ) (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.
В предыдущем параграфе мы вывели формулу вписанной в прямоугольный треугольник окружности по катету и прилежащему углу (формула (11)). Учитывая, что в прямоугольном треугольнике сумма острых углов равна 90°, имеем:
( small alpha+beta=90°) ( small beta=90°-alpha ) |
Тогда (11) можно преобразовать так (подробнее на странице Формулы приведения тригонометрических функций:
(12) |
Пример 3. Известны катет ( small a=6 ) прямоугольного треугольника и противолежащий угол ( small alpha=53°. ) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (12). Подставим значение ( small a=6, ; alpha=53° ) в (12):
Ответ:
Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать
Окружность, вписанная в прямоугольный треугольник
Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.
Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле
где a и b — длины катетов, c — гипотенузы.
Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.
Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.
Дано: ∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
1) По свойству отрезков касательных, проведенных из одной точки,
AK=AM=6 см,
2) AB=AM+BM=6+4=10 см,
3) По теореме Пифагора:
Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.
Ответ: 24 см, 24 см², 2 см.
Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.
Дано:∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
1) Проведем отрезки OK и OF.
(как радиусы, проведенные в точки касания).
Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).
А так как OK=OF (как радиусы), то OKCF — квадрат.
2) По свойству касательных, проведенных из одной точки,
3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.
📹 Видео
Геометрия Центр окружности, вписанной в прямоугольный треугольник удален от концов гипотенузы на aСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать
ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ| Радиус окружности, описанной около прямоугольного треугольника, равен 4. НайСкачать
Задача № 27933 ЕГЭ по математике. Урок 147Скачать
Теорема Пифагора для чайников)))Скачать
Задание 24 Радиус окружности вписанной в прямоугольный треугольникСкачать
Геометрия Катеты равнобедренного прямоугольного треугольника равны 2+√2. Найдите радиус окружностиСкачать
Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
Геометрия. ОГЭ по математике. Задание 16Скачать
Радиус окружности, вписанной в прямоугольный треугольник. ЗадачаСкачать
Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Формулы для радиуса окружности #shortsСкачать
Найдите гипотенузу равнобедренного прямоугольного треугольника, площадь которого равна 1Скачать