Задание 6. Радиус окружности, вписанной в правильный треугольник, равен 6. Найдите высоту этого треугольника.
Центр вписанной окружности в правильный треугольник лежит на пересечении его высот и делит их в отношении 2:1, следовательно, высота CH равна:
.
- Радиус вписанной в треугольник окружности онлайн
- 1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника
- 2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника
- 3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними
- 4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла
- Радиус окружности вписанной в правильный треугольник равен 31 найдите
- Как написать хороший ответ?
- 💥 Видео
Видео:2065 радиус окружности вписанной в правильный треугольник равен 29 Найдите высоту этого треугольникаСкачать
Радиус вписанной в треугольник окружности онлайн
С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника
Пусть известна площадь S треугольника и полупериметр
( small p=frac ) | (1) |
где a, b, c стороны треугольника (Рис.1).
Найдем радиус вписанной в треугольник окружности r.
Из центра O вписанной в треугольник окружности проведем перпендикуляры к сторонам треугольника. Все эти перпендикуляры равны радиусу r вписанной в треугольник окружности (Рис.2).
Прямыми OA, OB, OC разделим треугольник ABC на три треугольника: AOC, COB, AOB. Найдем площадь треугольников AOC, COB, AOB:
( small S_=frac cdot r cdot b ,) ( small S_=frac cdot r cdot c, ) ( small S_=frac cdot r cdot a ) | (2) |
( small S=S_+S_+S_)( small =frac cdot r cdot b ) ( small +frac cdot r cdot c ) ( small +frac cdot r cdot a ) ( small =frac cdot r cdot ( a+b+c) ) | (3) |
( small S=r cdot p. ) | (4) |
Найдем радиус r вписанной в треугольник окружности из равенства (4):
( small r=frac. ) | (5) |
Пример 1. Известны площадь ( small S=17 ) и полупериметр ( small p=10 ) треугольника. Найти радиус вписанной в треугольник окружности.
Решение. Для нахождения радиуса вписанной в треугольник окружности воспользуемся формулой (5).
Подставим значения ( small S=17 ) и ( small p=10 ) в (5):
Ответ:
Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника
Пусть известны три стороны треугольника: a, b, c. Найдем радиус вписанной в треугольник окружности (Рис.3).
Площадь треугольника по трем сторонам вычисляется из формулы:
(6) |
где полупериметр p вычисляется из формулы (1).
Подставляя (6) в (5), получим формулу радиуса вписанной в треугольник окружности:
( small r=sqrt<frac>, ) | (7) |
Пример 2. Известны стороны треугольника: ( small a=15 ,; b=7, ; c=9.) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала полупериметр треугольника из формулы (1):
Подставим значения ( small a,; b, ; c, ; p ) в (7):
Ответ:
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними
Пусть известны стороны b и c треугольника и угол A между ними (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.
Из теоремы косинусов найдем сторону a треугольника:
(8) |
Далее, для вычисления радиуса вписанной в треугольник окружности, воспользуемся формулой (7), где полупериметр p вычисляется из (1).
Пример 3. Известны стороны треугольника: ( small b=9 ,; c=7, ; ) и угол меджу ними A=30°. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала сторону a треугольника из формулы (8):
Далее найдем p из формулы (1):
Подставим значения ( small a,; b, ; c, ; p ) в (7):
Ответ:
Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать
4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла
Пусть известны сторона a треугольника и прилежащие два угла B и C (Рис.5). Найдем радиус вписанной в треугольник окружности.
(9) |
Поскольку сумма углов треугольника равна 180°, то имеем ( small angle A=180°-(angle B+angle C). ) Из формул приведения тригонометрических функций имеем: ( small sin A=sin (180°-( B+ C)) ) ( small =sin (B+C). ) Тогда формулы (9) можно переписать так:
(10) |
Получая значения сторон b, c из (10) и значение p из (1), можно найди радиус вписанной в треугольник окружности из формулы (7). Таким образом, для нахождения радиуса вписанной в треугольник окружности через сторону и прилежащим двум углам применяется формула
(11) |
(12) |
, | (13) |
. | (14) |
Пример 4. Сторона треугольника равена: ( small a=7 ,) а прилежащие два угла равны соответственно ( small angle B=25°, ) ( small angle C=40°, ) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11). Найдем, сначала, стороны b и c из формул (12),(13). Подставим значения ( small a=7 ,) ( small angle B=25°, ) ( small angle C=40°, ) в (12) и (13):
. |
Далее найдем полупериметр p из формулы (14):
. |
Подставляя значения a, b, c, p в (11), получим:
Ответ:
Видео:найти радиус окружности, описанной вокруг треугольникаСкачать
Радиус окружности вписанной в правильный треугольник равен 31 найдите
Вопрос по геометрии:
Радиус окружности вписанной в правильный треугольник равен 29 найдите высоту этого треугольника
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
💥 Видео
ЕГЭ 2017 | Задание 3 | Радиус окружности ... ✘ Школа ПифагораСкачать
Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать
Планиметрия 28 | mathus.ru | Радиус окружности, вписанной в равнобедренный треугольникСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Окружность вписана в равносторонний треугольник, найти радиусСкачать
Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать
Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать
Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать
Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать
Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Задание 16 ОГЭ по математике. Окружность описана около равностороннего треугольника. Задача 2Скачать