- Параллельные прямые
- Признак параллельности прямых
- Параллельные прямая и плоскость
- Признак параллельности прямой и плоскости
- Свойство прямой, параллельной данной плоскости
- Параллельные плоскости
- Признаки параллельности плоскостей
- Свойства параллельных плоскостей
- Свойства параллельных плоскостей
- Параллельность и перпендикулярность прямых и плоскостей в пространстве
- 🎦 Видео
Видео:10 класс, 10 урок, Параллельные плоскостиСкачать
Параллельные прямые
Параллельные прямые – прямые, которые лежат в одной плоскости и не пересекаются.
Признак параллельности прямых
Две прямые, параллельные третьей, параллельны между собой.
Видео:Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
Параллельные прямая и плоскость
Прямая и плоскость называются параллельными , если они не имеют общих точек.
Признак параллельности прямой и плоскости
Если прямая, не принадлежащая данной плоскости, параллельна какой-нибудь прямой этой плоскости, то она параллельна этой плоскости.
Свойство прямой, параллельной данной плоскости
Если плоскость β проходит через прямую a , параллельную плоскости α , и пересекает эту плоскость по прямой b , то b || a .
Видео:Параллельность прямой и плоскости. 10 класс.Скачать
Параллельные плоскости
Параллельные плоскости – плоскости, которые не пересекаются.
Признаки параллельности плоскостей
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то такие плоскости параллельны.
Если каждая из двух данных плоскостей параллельна третьей плоскости, то данные две плоскости параллельны между собой.
Свойства параллельных плоскостей
Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.
Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:10 класс, 11 урок, Свойства параллельных плоскостейСкачать
Свойства параллельных плоскостей
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы рассмотрим три свойства параллельных плоскостей: о пересечении двух параллельных плоскостей третьей плоскостью; о параллельных отрезках, заключенных между параллельными плоскостями; и о рассечении сторон угла параллельными плоскостями. Далее решим несколько задач с использованием этих свойств.
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Параллельность и перпендикулярность прямых и плоскостей в пространстве
Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости называются скрещивающимися. Прямая и плоскость в пространстве называются параллельными, если они не пересекаются.
Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.
Две плоскости называются параллельными, если они не пересекаются.
Если две параллельные плоскости пересекаются третьей плоскостью, то прямые пересечения плоскостей параллельны. Через точку, не лежащую в данной плоскости, можно провести параллельную плоскость, и притом только одну.
, так как
Отрезки параллельных прямых между параллельными плоскостями равны.
= =
Прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом. Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой в плоскости, проходящей через точку их пересечения.
Прямая, пересекающая плоскость, перпендикулярна плоскости, если она перпендикулярна двум прямым в плоскости, проходящим через точку их пересечения.
.
Через каждую точку плоскости можно провести перпендикулярную ей прямую, и только одну. Все прямые, перпендикулярные данной плоскости, параллельны.
Перпендикуляр, опущенный из данной точки на данную плоскость, — это отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, которая перпендикулярна плоскости. Основание перпендикуляра — это его конец, лежащий в плоскости.
Расстояние от точки до плоскости — это длина перпендикуляра, опущенного от этой точки на плоскость.
Наклонная, проведенная из данной точки к данной плоскости, — это любой отрезок, соединяющий данную точку с точкой плоскости, который не является перпендикуляром к плоскости. Конец отрезка, который лежит в плоскости, — это основание наклонной. Проекция наклонной — это отрезок, который соединяет основания перпендикуляра (точку С) и наклонной (точку А).
Если прямая, проведённая на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной. И обратно, если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Две пересекающиеся плоскости называются перпендикулярными, если плоскость, перпендикулярная прямой их пересечения, пересекает данные плоскости по перпендикулярным прямым.
Так как , то .
Поделись с друзьями в социальных сетях:
🎦 Видео
10 класс, 5 урок, Параллельность трех прямыхСкачать
ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрияСкачать
Параллельность прямых. 10 класс.Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Геометрия 10 класс : Параллельные плоскости и их свойстваСкачать
Параллельность прямой к плоскостиСкачать
10. Параллельные плоскостиСкачать
Параллельные прямые | Математика | TutorOnlineСкачать
Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
№52. Две стороны треугольника параллельны плоскости α. Докажите, что и третья сторонаСкачать
10 класс - Геометрия - Параллельные плоскости. Свойства параллельных плоскостейСкачать
11. Свойства параллельных плоскостейСкачать
4 параллельность плоскостейСкачать
Параллельные плоскости и признак параллельности плоскостейСкачать