С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых («канонический» или «параметрический» ), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Расстояние между прямыми в пространстве − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2:
. | (1) |
, | (2) |
Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.
1. Расстояние между параллельными прямыми в пространстве
Рассмотрим два метода вычисления расстояния между прямыми.
которое и является расстоянием между прямыми L1 и L2 (Рис.1).
Пример 1. Найти расстояние между прямыми L1 и L2:
(3) |
(4) |
q1=<m1, p1, l1>= |
q2=<m2, p2, l2>= |
Найдем проекцию точки M1 на прямую L2. Для этого построим плоскость α, проходящей через точку M1 и перпендикулярной прямойL2.
Для того, чтобы плоскость α было перепендикулярна прямой L2, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L2, т.е. в качестве нормального вектора плоскости α можно взять направляющий вектор прямой L2. Тогда уравнение искомой плоскости, проходящей через точку M1(x1, y1, z1) имеет следующий вид:
m2<x−x1)+p2(y−y1)+ l2(z−z1)=0 | (5) |
2(x−1)−4(y−2)+ 8(z−1)=0 |
После упрощения получим уравнение плоскости, проходящей через точку M1 и перпендикулярной прямой L2:
2x−4y+ 8z−2=0 | (6) |
Найдем точку пересечения прямой L2 и плоскости α, для этого построим параметрическое уравнение прямой L2.
Выразив переменные x, y, z через параметр t, получим параметрическое уравнение прямой L2:
(7) |
Чтобы найти точку пересечения прямой L2 и плоскости α, подставим значения переменных x, y, z из (7) в (6):
Решив уравнение получим:
(8) |
Подставляя полученное значение t в (7), получим точку пересеченияпрямой L2 и плоскости α:
Остается найти расстояние между точками M1 и M3:
Ответ: Расстояние между прямыми L1 и L2 равно d=7.2506.
Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L1 и L2. Если направляющие векторы прямых L1 и L2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q1=λq2, то прямые L1 и L2 параллельны.
Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d, разделив площадь на основание q1 параллелограмма.
Вычислим координаты вектора :
Вычислим векторное произведение векторов и q1:
Вычисляя определители второго порядка находим координаты вектора c:
Далее находим площадь параллелограмма:
. |
Расстояние между прямыми L1 и L2 равно:
, |
, |
Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми
(25) |
(26) |
q1=<m1, p1, l1>= |
q2=<m2, p2, l2>= |
Векторы q1 и q2 коллинеарны. Следовательно прямые L1 и L2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.
Построим вектор =<x2−x1, y2−y1, z2−z1>=.
Вычислим векторное произведение векторов и q1. Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов и q1:
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов и q1:
Таким образом, результатом векторного произведения векторов и q1 будет вектор:
Поскольку векторное произведение векторов и q1 дает плошадь параллелограмма образованным этими векторами, то расстояние между прямыми L1 и L2 равно :
Ответ: Расстояние между прямыми L1 и L2 равно d=7.25061.
2. Расстояние между скрещивающимися прямыми в пространстве
Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2 (уравнения (1) и (2)).
Пусть прямые L1 и L2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L1 и L2 нужно построить параллельные плоскости α1 и α2 так, чтобы прямая L1 лежал на плоскости α1 а прямая L2 − на плоскости α2. Тогда расстояние между прямыми L1 и L2 равно расстоянию между плоскостями L1 и L2 (Рис. 3).
Поскольку плоскость α1, проходит через прямую L1, то он проходит также через M1(x1, y1, z1). Следовательно справедливо следующее равенство:
A1x1+B1y1+C1z1+D1=0. | (27) |
где n1=<A1, B1, C1> − нормальный вектор плоскости α1. Для того, чтобы плоскость α1 проходила через прямую L1, нормальный вектор n1 должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:
A1m1+B1p1+C1l1=0. | (28) |
Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:
A1m2+B1p2+C1l2=0. | (29) |
Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A1, B1, C1, D1, и подставляя в уравнение
A1x+B1y+C1z+D1=0. | (30) |
получим уравнение плоскости α1. (Как построить уравнение плоскости, проходящей через прямую, параллельно другой прямой подробно изложено здесь).
Аналогичным образом находим уравнение плоскости α2:
A2x+B2y+C2z+D2=0. | (31) |
Плоскости α1 и α2 параллельны, следовательно полученные нормальные векторыn1=<A1, B1, C1> и n2=<A2, B2, C2> этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n2 совпадал с нормальным вектором уравнения (30).
Тогда расстояние между параллельными плоскостями вычисляется формулой:
. |
Полученное расстояние между плоскостями α1 и α2 является также расстоянием между прямыми L1 и L2.
Пример 3. Найти расстояние между прямыми
(32) |
(33) |
Построим плоскость α1, проходящую через прямую L1, параллельно прямой L2.
Поскольку плоскость α1 проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(2, 1, 4) и нормальный вектор n1=<m1, p1, l1> плоскости α1 перпендикулярна направляющему вектору q1 прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
A1x1+B1y1+C1z1+D1=0. | (34) |
а условие параллельности прямой L1 и искомой плоскости α1 представляется следующим условием:
A1m1+B1p1+C1l1=0. | (35) |
Так как плоскость α1 должна быть параллельной прямой L2, то должна выполнятся условие:
A1m2+B1p2+C1l2=0. | (36) |
A1·2+B1·1+C1·4+D1=0. | (37) |
A1·1+B1·3+C1·(−2)=0. | (38) |
A1·2+B1·(−3)+C1·7=0. | (39) |
Представим эти уравнения в матричном виде:
(40) |
(41) |
Искомая плоскость может быть представлена формулой:
A1x+B1y+C1z+D1=0. | (42) |
Упростим уравнение, умножив на число 17.
(43) |
Построим плоскость α2, проходящую через прямую L2, параллельно прямой L1.
Поскольку плоскость α2 проходит через прямую L2 , то она проходит также через точку M2(x2, y2, z2)=M2(6, −1, 2) и нормальный вектор n2=<m2, p2, l2> плоскости α2 перпендикулярна направляющему вектору q2 прямой L2. Тогда уравнение плоскости должна удовлетворять условию:
A2x2+B2y2+C2z2+D2=0. | (44) |
а условие параллельности прямой L2 и искомой плоскости α2 представляется следующим условием:
A2m2+B2p2+C2l2=0. | (45) |
Так как плоскость α2 должна быть параллельной прямой L1, то должна выполнятся условие:
A2m1+B2p1+C2l1=0. | (46) |
A1·6+B1·(−1)+C1·2+D1=0. | (47) |
A1·2+B1·(−3)+C1·7=0. | (48) |
A1·1+B1·3+C1·(−2)=0. | (49) |
Представим эти уравнения в матричном виде:
(50) |
(51) |
Искомая плоскость может быть представлена формулой:
A2x+B2y+C2z+D2=0. | (52) |
Упростим уравнение, умножив на число −83.
(53) |
Расстояние между построенными плоскостями (43) и (53) будет расстоянием между прямыми (1) и (2).
Запишем формулы уравнений плоскостей α1 и α2 :
A1x+B1y+C1z+D1=0. |
A2x+B2y+C2z+D2=0. |
Поскольку нормальные векторы плоскостей α1 и α2 совпадают, то можно найти расстояние между плоскостями α1 и α2, используя следующую формулу:
(54) |
Упростим и решим:
Расстояние между прямыми равно: d=4.839339
Видео:№124. Прямая PQ параллельна плоскости α. Через точки Р и Q проведены прямые, перпендикулярныеСкачать
показать, что прямые 2х-3у=6 и 4х-6у=25 параллельны и найти расстояние между
Показать, что прямые 2х-3у=6 и 4х-6у=25 параллельны и найти расстояние меж ними.
- Regina Nikukina
- Математика 2019-07-30 17:19:13 4 1
Прямые, данные уравнениями параллельны, если не существует точки их скрещения.
2x-3y=6 //*2
4x-6y=25
0=-13 тождество не производится, как следует прямые не пересекаются и означает они параллельны.
Найдём точку на прямой 2x-3y=6
x=0 -3y=6 M(0;-2)
расстояние до 2-ой прямой определяется по формуле
d=Ax+By+C/(A+B)
A=4, B=-6, C=-25
d=4*0-2*(-6)-25/(4+(-6))=12-25/(52)=1.802
расстояние меж прямыми одинаково 1.802
📺 Видео
№199. Прямая р параллельна стороне АВ треугольника ABC. Докажите, что прямые ВССкачать
Решение прямой геодезической задачиСкачать
Параллельные прямые. 6 класс.Скачать
Уравнение прямой.Скачать
Угловой коэффициент прямой. Решение задач.Скачать
Параллельные прямые, 6 классСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как построить прямую, заданную уравнением. Частные случаи уравнения прямой. Урок 2 Геометрия 8 классСкачать
№204 Концы отрезка АВ лежат на параллельных прямых а и b. Прямая, проходящая через середину ОСкачать
№16. Параллельные прямые a и b лежат в плоскости α. Докажите,Скачать
Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать
№977. Напишите уравнения прямых, проходящих через точку М (2; 5) и параллельных осям координат.Скачать
Симметрические системы / Как решать по шаблону? x/y+y/x=13/6; x+y=5Скачать
Решаем систему по-быстрому ➜ x+y=1; x⁴+y⁴=7 ➜ Как решать симметрические системы уравнений?Скачать
Простое решение сложного уравнения ➜ Решите уравнение ➜ x⁴-2x³-13x²+14x-3=0Скачать
3.1 Формула Даламбера, решение волнового уравнения на бесконечной прямойСкачать
Линейная функция, квадратичная функция и обратно-пропорциональная функция | Математика | TutorOnlineСкачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать