Прямая проходящая через вершину и центр вписанной окружности

Прямая проходящая через вершину и центр вписанной окружности

БАЗА ЗАДАНИЙ

Задание № 16. Планиметрия с доказательством.

1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.
а) Докажите, что ∠ABM =∠DBС = 30°.
б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.

Прямая проходящая через вершину и центр вписанной окружности

2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?
Ответ: б) 1:3

3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD.
а) Докажите, что AB:BC = AP:PD.
б) Найдите площадь треугольника COD, где O— центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а BC = 6√2.
Ответ: б) 18√3

4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°.
а) Докажите, что точки A1, B1, C1, H— лежат на одной окружности.
б) Найдите A1 H, если BC = 2√3.

5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
а) Докажите, что прямые KM и BC параллельны.
б) Пусть L— точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.
Ответ: б) √10

6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.
а) Докажите, что прямые PQ и BC параллельны.
б) Известно, что sin ∠AOC=√15/4. Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.
Ответ: б) 1:4

7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L.
а) Докажите, что CN:CM = LB:LA.
б) Найдите MN, если LB:LA = 2:3, а радиус малой окружности равен √23.
Ответ: б) 115/6

8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.
а) Докажите, что прямые MN и BO параллельны.
б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM:MC = 1:3.

9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D.
а) Докажите, что прямые AD и MC параллельны.
б) Найдите площадь треугольника DBC, если AK = 3 и MK = 12.

10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD пересекаются на стороне AD.
б) Пусть N— точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM:MC=1:3, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 18.

11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно.
а) Докажите, что отрезки AM и MK равны.
б) Найдите MK, если AB = 5, AC = 8.
Ответ: б) 2,88

12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC =OBC+OCB.
а) Докажите, что точка H лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OHI, если ∠ABC = 55°.

13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый.
а) Докажите, что треугольник PQW— прямоугольный.
б) Найдите площадь четырёхугольника ABCD.

14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно.
а) Докажите, что треугольник АВC подобен треугольнику AB 1 C 1 .
б) Вычислите длину стороны ВС и радиус данной окружности, если ∠ А = 45°, B 1 C 1 =6 и площадь треугольника AB 1 C 1 в восемь раз меньше площади четырёхугольника BCB 1 C 1 .

Прямая проходящая через вершину и центр вписанной окружности

15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD.
а) Докажите, что луч AC— биссектриса угла BAD.
б) Найдите CD, если известны диагонали трапеции: AC = 15 и BD = 8,5.

16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота.
а) Докажите, что прямые MH и NH перпендикулярны
б) Пусть Р – точка пересечения прямых АС и NH, а Q – точка пересечения прямых ВС и MH. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.

17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.
а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.
б) Найдите sin ∠BMC если известно, что отрезок ВМ в 2,5 раза больше радиуса вписанной в треугольник окружности.
Ответ: б) 0,65

18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.
а) Докажите, что прямые ЕН и АС параллельны.
б) Найдите отношение ЕН:АС, если угол АВС равен 30.
Ответ: б) 3:4

19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно.
а) Докажите, что KC = (KL+KM-LM)/2 .

б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60.
Ответ: б) 5:2

20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.
а) Докажите, что четырёхугольник DQOH — параллелограмм.
б) Найдите AD, если ∠BAD = 75° и BC =1.
Ответ: б) 3

21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что CK*CE = AB*CD.
б) Найдите отношение CK к KE, если ∠ ECD = 15.
Ответ: б) 2:1

22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если cos ∠BAC = 7/25.
Ответ: б) 25:36

23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите, в каком отношении высота этого треугольника делит сторону BC.
Ответ: б) 5:4

24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P.
а) Докажите, что прямые PM и QM перпендикулярны.
б) Найдите PQ, если AM = 1, BM = 3, а Q – середина дуги MB.

25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.
а) Докажите, что отрезок BK втрое больше отрезка CK.
б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 24 и BN = 23.

Прямая проходящая через вершину и центр вписанной окружности

26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности.
а) Прямая, проходящая через центр окружностей, пересекает основание AD в точке P. Докажите, что AP/PD = sin ∠D.
б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.

Прямая проходящая через вершину и центр вписанной окружности

27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O.
а) Докажите, что sin ∠AOD = sin ∠ BOS.
б) Найдите площадь трапеции, если ∠ BAD = 90, а основания равны 5 и 7.

28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.
а) Докажите, что диагонали перпендикулярны.
б) Найдите площадь трапеции.

Видео:№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мноСкачать

№200. Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около мно

Прямая проходящая через вершину и центр вписанной окружности

В четырехугольнике ABCD через каждую его вершину проведена прямая, проходящая через центр вписанной в него окружности. Три из этих прямых обладают тем свойством, что каждая из них делит площадь четырехугольника на две равновеликие части.

а) Докажите, что и четвертая прямая обладает тем же свойством.

б) Какие значения могут принимать углы этого четырехугольника, если один из них равен 108°?

а) Пусть Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружностиделят площадь ABCD пополам. Имеем:

Прямая проходящая через вершину и центр вписанной окружности

Прямая проходящая через вершину и центр вписанной окружности

также у этих треугольников равные высоты, опущенные из точки I.

Прямая проходящая через вершину и центр вписанной окружности

высоты этих треугольников, опущенные из точки I, равны.

Пусть Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружностиТогда:

Прямая проходящая через вершину и центр вписанной окружности

Прямая проходящая через вершину и центр вписанной окружности

Следовательно, Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружностиКроме того,

Прямая проходящая через вершину и центр вписанной окружности

Следовательно, треугольники ABD и CBD равны. Значит, BD — биссектриса угла B, а BD, Прямая проходящая через вершину и центр вписанной окружностии Прямая проходящая через вершину и центр вписанной окружностисовпадают. Следовательно, Прямая проходящая через вершину и центр вписанной окружностиделит Прямая проходящая через вершину и центр вписанной окружностипополам.

б) Ясно, что ромб с углами 108°, 108°, 72° и 72° годится. Из пункта а): Прямая проходящая через вершину и центр вписанной окружностии Прямая проходящая через вершину и центр вписанной окружностиДалее, Прямая проходящая через вершину и центр вписанной окружностиследовательно, прямая Прямая проходящая через вершину и центр вписанной окружностипараллельна прямой AD. Значит, Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружности Прямая проходящая через вершину и центр вписанной окружностиСледовательно, Прямая проходящая через вершину и центр вписанной окружности— равнобедренная трапеция, а углы BAD, ADC и BCD равны. Значит, в ABCD три равных угла: 108°, 108°, 108° и 36° или 108°, 84°, 84° или 84°.

Замечание. Четырёхугольник, для которого каждая из прямых, проходящих через вершину и центр вписанной окружности, делит его на две равновеликие части, есть либо ромб, либо выпуклый дельтоид, у которого три угла равны и меньше четвёртого: с углами α, α, α и 360° − α, где α Ответ: б) 108°, 108°, 108° и 36° или 108°, 84°, 84° или 84°.

В 2009 году это задание предлагалось одиннадцатиклассникам на Московской математической олимпиаде.

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б3
Получен обоснованный ответ в пункте б

имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а

при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Please wait.

Видео:65 Вписанная окружность и окружность, проходящая через две вершины и центр вписанной окружностиСкачать

65 Вписанная окружность и окружность, проходящая через две вершины и центр вписанной окружности

We are checking your browser. mathvox.ru

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Пирамиды, в которых высота проходит через центр вписанной в основание окружностиСкачать

Пирамиды,  в которых высота проходит через центр вписанной в основание окружности

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 6d6226318eb816f0 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

🌟 Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

ОГЭ. Задание 24. Геометрическая задача на вычислениеСкачать

ОГЭ. Задание 24. Геометрическая задача на вычисление

5.31.1. Планиметрия. Гордин Р.К.Скачать

5.31.1. Планиметрия. Гордин Р.К.

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

ЕГЭ по математике. Задание №16 #11Скачать

ЕГЭ по математике. Задание №16 #11

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Найти расстояние от центра окружности до вершины прямого углаСкачать

Найти расстояние от центра окружности до вершины прямого угла

Окружность с центром на стороне AС треугольника ABC проходит через вершину С и касается прямой AB вСкачать

Окружность с центром на стороне AС треугольника ABC проходит через вершину С  и касается прямой AB в

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр ОСкачать

№204. Прямая ОМ перпендикулярна к плоскости правильного треугольника ABC и проходит через центр О

Задача 16 из проф ЕГЭ по математике основная волна, резервный день. Запад. Вариант 1Скачать

Задача 16 из проф ЕГЭ по математике основная волна, резервный день. Запад. Вариант 1

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

ВПИСАННАЯ ОКРУЖНОСТЬ + ПРАВИЛА ОФОРМЛЕНИЯ!Скачать

ВПИСАННАЯ ОКРУЖНОСТЬ + ПРАВИЛА ОФОРМЛЕНИЯ!

Планиметрия 38 | mathus.ru | окружность вписана в равнобедрунную трапецию | отношение площадейСкачать

Планиметрия 38 | mathus.ru | окружность вписана в равнобедрунную трапецию | отношение площадей

Геометрия. 7 класс. Урок 9 "Окружность проходящая через вершины треугольника"Скачать

Геометрия. 7 класс. Урок 9 "Окружность проходящая через вершины треугольника"
Поделиться или сохранить к себе: