Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

БАЗА ЗАДАНИЙ

Задание № 16. Планиметрия с доказательством.

1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.
а) Докажите, что ∠ABM =∠DBС = 30°.
б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?
Ответ: б) 1:3

3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD.
а) Докажите, что AB:BC = AP:PD.
б) Найдите площадь треугольника COD, где O— центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а BC = 6√2.
Ответ: б) 18√3

4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°.
а) Докажите, что точки A1, B1, C1, H— лежат на одной окружности.
б) Найдите A1 H, если BC = 2√3.

5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
а) Докажите, что прямые KM и BC параллельны.
б) Пусть L— точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.
Ответ: б) √10

6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.
а) Докажите, что прямые PQ и BC параллельны.
б) Известно, что sin ∠AOC=√15/4. Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.
Ответ: б) 1:4

7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L.
а) Докажите, что CN:CM = LB:LA.
б) Найдите MN, если LB:LA = 2:3, а радиус малой окружности равен √23.
Ответ: б) 115/6

8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.
а) Докажите, что прямые MN и BO параллельны.
б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM:MC = 1:3.

9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D.
а) Докажите, что прямые AD и MC параллельны.
б) Найдите площадь треугольника DBC, если AK = 3 и MK = 12.

10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD пересекаются на стороне AD.
б) Пусть N— точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM:MC=1:3, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 18.

11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно.
а) Докажите, что отрезки AM и MK равны.
б) Найдите MK, если AB = 5, AC = 8.
Ответ: б) 2,88

12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC =OBC+OCB.
а) Докажите, что точка H лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OHI, если ∠ABC = 55°.

13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый.
а) Докажите, что треугольник PQW— прямоугольный.
б) Найдите площадь четырёхугольника ABCD.

14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно.
а) Докажите, что треугольник АВC подобен треугольнику AB 1 C 1 .
б) Вычислите длину стороны ВС и радиус данной окружности, если ∠ А = 45°, B 1 C 1 =6 и площадь треугольника AB 1 C 1 в восемь раз меньше площади четырёхугольника BCB 1 C 1 .

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD.
а) Докажите, что луч AC— биссектриса угла BAD.
б) Найдите CD, если известны диагонали трапеции: AC = 15 и BD = 8,5.

16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота.
а) Докажите, что прямые MH и NH перпендикулярны
б) Пусть Р – точка пересечения прямых АС и NH, а Q – точка пересечения прямых ВС и MH. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.

17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.
а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.
б) Найдите sin ∠BMC если известно, что отрезок ВМ в 2,5 раза больше радиуса вписанной в треугольник окружности.
Ответ: б) 0,65

18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.
а) Докажите, что прямые ЕН и АС параллельны.
б) Найдите отношение ЕН:АС, если угол АВС равен 30.
Ответ: б) 3:4

19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно.
а) Докажите, что KC = (KL+KM-LM)/2 .

б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60.
Ответ: б) 5:2

20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.
а) Докажите, что четырёхугольник DQOH — параллелограмм.
б) Найдите AD, если ∠BAD = 75° и BC =1.
Ответ: б) 3

21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что CK*CE = AB*CD.
б) Найдите отношение CK к KE, если ∠ ECD = 15.
Ответ: б) 2:1

22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если cos ∠BAC = 7/25.
Ответ: б) 25:36

23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите, в каком отношении высота этого треугольника делит сторону BC.
Ответ: б) 5:4

24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P.
а) Докажите, что прямые PM и QM перпендикулярны.
б) Найдите PQ, если AM = 1, BM = 3, а Q – середина дуги MB.

25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.
а) Докажите, что отрезок BK втрое больше отрезка CK.
б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 24 и BN = 23.

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности.
а) Прямая, проходящая через центр окружностей, пересекает основание AD в точке P. Докажите, что AP/PD = sin ∠D.
б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O.
а) Докажите, что sin ∠AOD = sin ∠ BOS.
б) Найдите площадь трапеции, если ∠ BAD = 90, а основания равны 5 и 7.

28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.
а) Докажите, что диагонали перпендикулярны.
б) Найдите площадь трапеции.

Видео:Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точкахСкачать

Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках

Задача по планиметрии

Разбор одной нестандартной задачи по планиметрии.

Прямая, проходящая через середину (M) гипотенузы (AB) прямоугольного треугольника (ABC), перпендикулярна (CM) и пересекает катет (AC) в точке (K). При этом (AK:KC = 1:2).
а) Докажите, что (angle BAC = 30^circ ).
б) Пусть прямые (MK) и (BC) пересекаются в точке (P), а прямые (AP) и (BK) – в точке (Q). Найдите (KQ), если (BC = sqrt ).

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке dа) По свойству медианы, проведенной к гипотенузе, имеем (CM = AM), откуда (angle ACM = angle MAC) и треугольники (CMK) и (ACB) подобны. Из подобия следует

По условию (AC = fracKC), а (CM = fracAB). Получим

Получается, что в прямоугольном треугольнике ABC (cos angle BAC = frac<>), значит (angle BAC = 30^circ ).

б) Заметим, что треугольники (ABC) и (PKC) подобны. Произведем вычисления:

(AC = BCsqrt 3 = 3sqrt 7 ,;;AK = fracAC = sqrt 7 ,;;KB = sqrt <K+ B> = 7,)

(CP = KCsqrt 3 = 2sqrt ,;;AP = sqrt <A+ P> = 7sqrt 3 .)

Обозначим (angle BKC = alpha ), (angle CAP = beta ).

(sin alpha = frac <<sqrt >> = cos beta ,;;cos alpha = frac<> = sin beta .)

(angle Q = pi — alpha — left( right) = beta — alpha .)

(sin angle Q = sin left( right) = sin beta cos alpha — sin alpha cos beta = frac.)

По теореме синусов:

Ответ:
а) что и требовалось доказать;
б) 14.

Видео:Решаем геометрию ОГЭ по математике 2024! Задание №15.Скачать

Решаем геометрию ОГЭ по математике 2024! Задание №15.

Задача 16 геометрия на ЕГЭ-2021 по математике

На этой странице — обзор разных типов заданий № 16 ЕГЭ-2021 по математике, то есть задач по геометрии.

Все они имеют нечто общее: во-первых, это стандартный уровень сложности, то есть вполне решаемые задачи. Пункт (а) в них вообще простой.

Во-вторых, в каждой из них применяются свойства четырехугольников, вписанных в окружности.

В первой задаче такая окружность находится почти сразу, причем она – вспомогательная, и ее можно даже не изображать на чертеже. Главное – найти равные вписанные углы, опирающиеся на равные дуги или на одну дугу.

Также здесь использована формула синуса тройного угла. Если вы ее забыли – не беда. Ведь а формулу синуса суммы вы знаете.

1. Дана равнобедренная трапеция ABCD, в которой меньшее основание ВС равно боковой стороне. Точка Е такова, что ВЕ перпендикулярно AD и СЕ перпендикулярно BD.
а) Доказать, что угол АЕВ равен углу BDA.
б) Найти площадь трапеции ABCD, если АВ = 32, косинус угла АDВ равен

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

– равнобедренный, CM – высота, проведенная к основанию, значит, M – середина BD.

Докажем, что точки A, B, C, D, E лежат на одной окружности.

ABCD – равнобедренная трапеция, ее можно вписать в окружность.

В – медиана и высота, значит, равнобедренный, BE = ED.

Тогда по трем сторонам, четырехугольник BCDE можно вписать в окружность, т.к.

Так как вокруг можно описать только одну окружность и вокруг четырехугольников ABCD и BCDE тоже можно описать окружность, точки A, B, C, D, E лежат на одной окружности, так как опираются на одну и ту же дугу AB (точки E и D лежат по одну сторону от прямой AD).

б) Так как AB = BC = CD, то дуги AB, BC и CD также равны.

Четырехугольник ABDE вписан в окружность, тогда

По формуле синуса тройного угла,

тогда по теореме синусов

Проведем в трапеции ABCD высоту CK, тогда

BH и CK – высоты трапеции, а так как трапеция равнобедренная, то

Во второй задаче мы увидим ту же идею: вспомогательную окружность. Это один из методов, помогающих решать задачи ЕГЭ по геометрии. Есть здесь и другой мощный прием – использование двух пар подобных треугольников. И еще свойство высоты прямоугольного треугольника, проведенной к гипотенузе. Если вы в восьмом и девятом классе учили геометрию – вы должны владеть этими приемами.

2. Дан прямоугольный треугольник АВС с прямым углом С. Из вершины С на гипотенузу опущена высота СН, на АС и ВС соответственно отмечены точки М и N так, что угол MHN – прямой.
а) Докажите, что треугольники МNH и АВС подобны.
б) Найдите СN, если АС = 5, СМ = 2, ВС = 3.

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

а) Рассмотрим четырехугольник CMHN.

по условию, значит, CMHN можно вписать в окружность; вписанные, опираются на дугу HN.

Запишем соотношение сходственных сторон.

По условию, AM = 3, найдем CH — высоту

по теореме Пифагора,

AH — проекция катета AC на гипотенузу, по свойствам прямоугольного треугольника, отсюда

В следующей задаче мы снова видим окружность и вписанную в нее трапецию. И наверное, вы уже заметили: пункт (а) задач по геометрии на ЕГЭ часто оказывается подсказкой для решения пункта (б). То, что мы доказали в (а), мы используем в пункте (б).

3. Даны 5 точек на окружности: A, B, C, D, E, причем АЕ = ED = CD, ВЕ перпендикулярен АС.
Точка Т – точка пересечения АС и BD.
а) Докажите, что отрезок ЕС делит отрезок ТD пополам.
б) Найдите площадь треугольника АВТ, если BD = 10, АЕ =

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

Докажем, что M — середина TD.

Если AE = ED = DC, то дуги AE, ED, DC, также равны;

— накрест лежащие, при пересечении AC и DE секущей CE, значит, AEDC — равнобедренная трапеция. значит, BD — диаметр окружности.

(опирается на диаметр), по катету и гипотенузе, тогда DM — биссектриса равнобедренного т.к. — равнобедренный, то DM — медиана M — середина CE, кроме того, DM — высота

В — медиана и высота, значит, — равнобедренный, а так как — накрест лежащие, при параллельных прямых AC и DE и секущей CE, то по боковой стороне и углу при основании, тогда

CDET — ромб, M — точка пересечения его диагоналей, M — середина TD.

Мы нашли, что AE = ED = CD = CT = ET.

BD = 10 — диаметр окружности.

— равнобедренный, AE = ET, — высота и медиана

Тогда BN — медиана и высота — равнобедренный, AB = BT.

Обозначим тогда — опираются на дугу AE,

Из по теореме синусов:

И еще одна трапеция, вписанная в окружность. Теперь вы точно выучите ее свойства наизусть! Также здесь применяется теорема о пересекающихся хордах. Все эти полезные теоремы, свойства и признаки можно найти в нашей универсальной шпаргалке – Справочнике Анны Малковой для подготовки к ЕГЭ по математике. Скачать Справочник бесплатно можно здесь.

4. Трапеция с большим основанием AD и высотой ВН вписана в окружность. Прямая BH пересекает окружность в точке К.

б) Найдите AD, если: радиус окружности равен шести, СК пересекается с AD в точке N и площадь четырехугольника BHNC в 24 раза больше, чем плошать треугольника KHN.

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d
а) Трапеция ABCD вписана в окружность, следовательно, AB = CD (трапеция равнобокая)

Тогда — вписанные, опираются одну и ту же на дугу AK;

следовательно, CK — диаметр окружности, так как вписанный угол, опирающийся на диаметр, прямой; — опирается на диаметр CK, значит,

(опираются на дугу BC), тогда

Обозначим так как HE = BC,

Из подобия треугольников KNH и KCB следует, что тогда

По теореме о пересекающихся хордах,

Представив левую часть уравнения как разность квадратов, получим:

По смыслу задачи тогда и значит

Задача по геометрии на ЕГЭ по математике оценивается в 3 балла. Как видите, в 2021 году эти 3 балла за геометрию можно было получить без особенных трудностей. На нашем Онлайн-курсе подготовки к ЕГЭ мы решаем и такие задачи по геометрии, и более сложные. Если ты сейчас в 10-м или в 11-м классе – попробуй бесплатно Демо-доступ к Онлайн-курсу.

5. (Резервный день) Окружность с центром О, построенная на катете АС прямоугольного треугольника АВС, как на диаметре, пересекает гипотенузу АВ в точках А и D. Касательная, проведенная к этой окружности в точке D, пересекает катет ВС в точке М.

А) Докажите, что ВМ = СМ
Б) Прямая DM пересекает прямую АС в точке Р, прямая ОМ пересекает прямую ВР в точке К.

Найдите ВК : КР, если

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

а) Так как – радиус окружности, – равнобедренный, так как (касательная перпендикулярна радиусу, проведенному в точку касания), тогда

– угол между касательной и хордой,

Тогда т.е. – высота – прямоугольный, – равнобедренный, отсюда

Прямая параллельная гипотенузе ab прямоугольного треугольника abc пересекает катет ac в точке d

Найдем BK : KP, если тогда

Значит, (вертикальные), — равнобедренный, тогда так как MK – биссектриса

🌟 Видео

Геометрия На гипотенузе AB прямоугольного треугольника ABC отмечена точка M так что AM:BM = 1:3Скачать

Геометрия На гипотенузе AB прямоугольного треугольника ABC отмечена точка M так что AM:BM = 1:3

ОГЭ по математике 2024 геометрия | Разбор всех 15 заданийСкачать

ОГЭ по математике 2024 геометрия | Разбор всех 15 заданий

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать

Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭ

Задание 3 ЕГЭ по математике. Урок 41Скачать

Задание 3 ЕГЭ по математике. Урок 41

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABCСкачать

№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABC

Задание 15. Все о треугольниках. Часть 1.Скачать

Задание 15.  Все о треугольниках. Часть 1.

🔴 ВСЕ ЗАДАНИЯ 26 ИЗ ОТКРЫТОГО БАНКА (ПЕРВАЯ ПОЛОВИНА ВСЕХ ЗАДАЧ) | ОГЭ 2017Скачать

🔴 ВСЕ ЗАДАНИЯ 26 ИЗ ОТКРЫТОГО БАНКА (ПЕРВАЯ ПОЛОВИНА ВСЕХ ЗАДАЧ) | ОГЭ 2017

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Планиметрия. №4. (16 задача ЕГЭ).Скачать

Планиметрия. №4. (16 задача ЕГЭ).

№199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этогоСкачать

№199. Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого

Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая пересекающая сторону ВС вСкачать

Через середину К медианы ВМ треугольника АВС и вершину А проведена прямая пересекающая сторону ВС в

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

№154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 смСкачать

№154. Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD = 9 см

№272. В равностороннем треугольнике ABC проведена биссектриса AD. Расстояние от точки DСкачать

№272. В равностороннем треугольнике ABC проведена биссектриса AD. Расстояние от точки D

ЕГЭ 2023 Ященко 7 вариант ФИПИ школе полный разбор!Скачать

ЕГЭ 2023 Ященко 7 вариант ФИПИ школе полный разбор!

🔴 ВСЕ ЗАДАНИЯ 24 ИЗ ОТКРЫТОГО БАНКА (ВТОРАЯ ЧАСТЬ) | ОГЭ 2017 | ШКОЛА ПИФАГОРАСкачать

🔴 ВСЕ ЗАДАНИЯ 24 ИЗ ОТКРЫТОГО БАНКА (ВТОРАЯ ЧАСТЬ) | ОГЭ 2017 | ШКОЛА ПИФАГОРА
Поделиться или сохранить к себе: