Признаки односторонних углов при параллельных прямых

Признаки и свойства параллельных прямых

Видео:ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Признаки односторонних углов при параллельных прямых

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Признаки односторонних углов при параллельных прямых

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Признаки односторонних углов при параллельных прямых

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

Признаки односторонних углов при параллельных прямых

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Признаки односторонних углов при параллельных прямых

Видео:ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углы

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Признаки односторонних углов при параллельных прямых

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Признаки односторонних углов при параллельных прямых

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Признаки односторонних углов при параллельных прямых

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Признаки односторонних углов при параллельных прямых

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Признаки односторонних углов при параллельных прямых

Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть

Конечно, углы и , и — тоже вертикальные.

Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .

Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.

Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть

Углы и (а также и , и , и ) называются соответственными.

Соответственные углы равны, то есть

Углы и (а также и , и , и ) называют накрест лежащими.

Накрест лежащие углы равны, то есть

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.

Ты нашел то, что искал? Поделись с друзьями!

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .

Признаки односторонних углов при параллельных прямых Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.

Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.

Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .

Периметр параллелограмма — это сумма всех его сторон, то есть

2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.

Признаки односторонних углов при параллельных прямых Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, , то есть .

Углы и — односторонние при параллельных прямых и секущей, следовательно,

Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Прямая линия. Признаки параллельности прямых линий.

Если две произвольные прямые AB и СD пересечены третьей прямой MN, то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы: 3 и 5, 4 и 6;

внешние накрест лежащие углы: 1 и 7, 2 и 8;

внутренние односторонние углы: 3 и 6, 4 и 5;

внешние односторонние углы: 1 и 8, 2 и 7.

Описанные углы видны на рисунке:

Признаки односторонних углов при параллельных прямых

Теорема.

Если две параллельные прямые пересечены третьей прямой, то сформировавшиеся:

1. внутренние накрест лежащие углы одинаковы;

2. внешние накрест лежащие углы одинаковы;

3. соответственные углы одинаковы;

4. сумма внутренних односторонних углов будет 2d = 180 0 ;

5. сумма внешних односторонних углов будет 2d = 180 0 ;

Данную теорему иллюстрирует рисунок:

Имеются две параллельные прямые AB и СD, их пересекает третья прямая MN.

1. ∠ 4 = ∠ 6 и ∠ 3 = ∠ 5;

2. ∠ 2 = ∠ 8 и ∠ 1 = ∠ 7;

3. ∠ 2 =∠ 6, ∠ 1 = ∠ 5, ∠ 3 = ∠ 7, ∠ 4 = ∠ 8;

4. ∠ 3 + ∠ 6 = 2d и ∠ 4 + ∠ 5 = 2d;

5. ∠ 2 + ∠ 7 = 2d и ∠ 1 + ∠ 8 = 2d.

1. Из середины E того отрезка прямой MN, который размещается между параллельными прямыми, прочертим на СD перпендикуляр EK и продолжим его до пересечения с AB в точке L. Так как перпендикуляр к одной из параллельных есть также и перпендикуляр к другой параллельной, то образовавшиеся при этом треугольники (заштрихованные на чертеже) — оба прямоугольные. Они одинаковы, потому что в них по равной гипотенузе и по одинаковому острому углу при точке E. Из равенства треугольников получаем, что внутренние накрест лежащие углы 4 и 6 одинаковы. Два прочих внутренних накрест лежащих угла 3 и 5 одинаковы, как дополнения до 2d к одинаковым углам 4 и 6 (как смежные с 4 и 6).

2. Внешние накрест лежащие углы равны соответственно внутренним накрест лежащим углам, как углы вертикальные.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам, как углы вертикальные.

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

🌟 Видео

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

Углы при параллельных прямыхСкачать

Углы при параллельных прямых

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

ОДНОСТОРОННИЕ УГЛЫ, параллельные прямые, секущая. Учимся находить односторонние углы.Скачать

ОДНОСТОРОННИЕ УГЛЫ, параллельные прямые, секущая. Учимся находить односторонние углы.

Признак параллельности прямых. Накрест лежащие, соответственные, односторонние углы.Скачать

Признак параллельности прямых. Накрест лежащие, соответственные, односторонние углы.

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Пары углов в геометрииСкачать

Пары углов в геометрии

ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ двух прямых. §14 геометрия 7 классСкачать

ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ двух прямых. §14 геометрия 7 класс

Признаки параллельности прямых. Первый. Доказательство.Скачать

Признаки параллельности прямых. Первый. Доказательство.

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.Скачать

Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.
Поделиться или сохранить к себе: