Построение описанной окружности к прямоугольному треугольнику

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Построение описанной окружности к прямоугольному треугольникуСерединный перпендикуляр к отрезку
Построение описанной окружности к прямоугольному треугольникуОкружность описанная около треугольника
Построение описанной окружности к прямоугольному треугольникуСвойства описанной около треугольника окружности. Теорема синусов
Построение описанной окружности к прямоугольному треугольникуДоказательства теорем о свойствах описанной около треугольника окружности

Построение описанной окружности к прямоугольному треугольнику

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Построение описанной окружности к прямоугольному треугольнику

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Построение описанной окружности к прямоугольному треугольнику

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Построение описанной окружности к прямоугольному треугольнику

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Построение описанной окружности к прямоугольному треугольнику

Построение описанной окружности к прямоугольному треугольнику

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Построение описанной окружности к прямоугольному треугольнику

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Построение описанной окружности к прямоугольному треугольнику

Построение описанной окружности к прямоугольному треугольнику

Полученное противоречие и завершает доказательство теоремы 2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Построение описанной окружности к прямоугольному треугольнику

Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Построение описанной окружности к прямоугольному треугольнику,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Построение описанной окружности к прямоугольному треугольнику

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Построение описанной окружности к прямоугольному треугольникуВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаПостроение описанной окружности к прямоугольному треугольникуОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиПостроение описанной окружности к прямоугольному треугольникуЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиПостроение описанной окружности к прямоугольному треугольникуЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовПостроение описанной окружности к прямоугольному треугольнику
Площадь треугольникаПостроение описанной окружности к прямоугольному треугольнику
Радиус описанной окружностиПостроение описанной окружности к прямоугольному треугольнику
Серединные перпендикуляры к сторонам треугольника
Построение описанной окружности к прямоугольному треугольнику

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаПостроение описанной окружности к прямоугольному треугольнику

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиПостроение описанной окружности к прямоугольному треугольнику

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиПостроение описанной окружности к прямоугольному треугольнику

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиПостроение описанной окружности к прямоугольному треугольнику

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовПостроение описанной окружности к прямоугольному треугольнику

Для любого треугольника справедливы равенства (теорема синусов):

Построение описанной окружности к прямоугольному треугольнику,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаПостроение описанной окружности к прямоугольному треугольнику

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиПостроение описанной окружности к прямоугольному треугольнику

Для любого треугольника справедливо равенство:

Построение описанной окружности к прямоугольному треугольнику

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Построение описанной окружности к прямоугольному треугольнику

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Построение описанной окружности к прямоугольному треугольнику

Построение описанной окружности к прямоугольному треугольнику.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Построение описанной окружности к прямоугольному треугольнику

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Прямоугольный треугольник, формулы, задачи в общем виде

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Построение описанной окружности к прямоугольному треугольнику

Тема этого занятия – «Прямоугольный треугольник, формулы, задачи в общем виде». Для начала дадим еще раз определение прямоугольному треугольнику, повторим основные тригонометрические функции и формулы, в которых он применяется. Решим задачи на вписанную в такие треугольники окружность и описанную вокруг них окружность.

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Построение описанной окружности к прямоугольному треугольнику

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Построение описанной окружности к прямоугольному треугольнику

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Построение описанной окружности к прямоугольному треугольнику

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Построение описанной окружности к прямоугольному треугольнику

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Построение описанной окружности к прямоугольному треугольнику

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

🎥 Видео

Построение вписанной и описанной окружности.Скачать

Построение вписанной и описанной окружности.

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Геометрия 28.04.2020 | Построение описанной и вписанной окружностиСкачать

Геометрия 28.04.2020 | Построение описанной и  вписанной окружности

Построение окружности, вписанной в треугольникСкачать

Построение окружности, вписанной в треугольник

6 ПОСТРОЕНИЕ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО 3-КАСкачать

6    ПОСТРОЕНИЕ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО 3-КА

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

Построение вписанной окружностиСкачать

Построение вписанной окружности

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.Скачать

Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.

Как построить окружность, описанную около треугольника, в программе ГЕОГЕБРАСкачать

Как построить окружность, описанную около треугольника, в программе ГЕОГЕБРА

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать

№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый

Прямоугольный треугольник и описанная окружностьСкачать

Прямоугольный треугольник и описанная окружность
Поделиться или сохранить к себе: