Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
Окружность | ||||||||||||||||||||||||||||
Круг | ||||||||||||||||||||||||||||
Радиус | ||||||||||||||||||||||||||||
Хорда | ||||||||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||||||||
Касательная | ||||||||||||||||||||||||||||
Секущая |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Конечная часть плоскости, ограниченная окружностью
Отрезок, соединяющий центр окружности с любой точкой окружности
Отрезок, соединяющий две любые точки окружности
Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности
Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания
Прямая, пересекающая окружность в двух точках
Видео:Демо-вариант ОГЭ по математике, задача 10Скачать
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | Большая из двух хорд расположена ближе к центру окружности. | |
Равные дуги | У равных дуг равны и хорды. | |
Параллельные хорды | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Большая из двух хорд расположена ближе к центру окружности.
У равных дуг равны и хорды.
Дуги, заключённые между параллельными хордами, равны.
Видео:Теорема о диаметре, перпендикулярном хордеСкачать
Теоремы о длинах хорд, касательных и секущих
Фигура | Рисунок | Теорема | ||||||||||||||||
Пересекающиеся хорды | ||||||||||||||||||
Касательные, проведённые к окружности из одной точки | ||||||||||||||||||
Касательная и секущая, проведённые к окружности из одной точки | ||||||||||||||||||
Секущие, проведённые из одной точки вне круга |
Пересекающиеся хорды | ||
Касательные, проведённые к окружности из одной точки | ||
Касательная и секущая, проведённые к окружности из одной точки | ||
Секущие, проведённые из одной точки вне круга | ||
Пересекающиеся хорды |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:4K Как найти центр окружности, how to find the center of a circleСкачать
Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать
Теорема о серединном перпендикуляре к хорде
Серединный перпендикуляр к хорде проходит через центр окружности.
Серединный перпендикуляр к отрезку АВ – это множество точек, равноудаленных от точек А и В. Другими словами, все точки, равноудаленные от А и В, лежат на серединном перпендикуляре к АВ. С другой стороны, если точки А и В лежат на окружности с центром О, то АО = ВО. Это значит, что точка О лежит на серединном перпендикуляре к АВ.
Видео:ОГЭ. Математика. Задание 26 | Перпендикуляр в окружности | Борис Трушин |Скачать
Это полезно
В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Расстояние от центра окружности до хорды
Рассмотрим, как найти расстояние от центра окружности до хорды.
Расстояние от точки до прямой измеряется длиной перпендикуляра, опущенного из этой точки на данную прямую. Значит, расстояние от центра окружности до хорды равно длине перпендикуляра, проведённого из центра окружности к этой хорде.
Например, расстояние от точки O — центра окружности — до хорды AB равно длине перпендикуляра OF:
Отрезки AB и CD являются хордами окружности. Найти расстояние от центра окружности до хорды CD, если AB=24, CD=10, а расстояние от центра окружности до хорды AB равно 5.
Дано: окружность (O; R), AB и CD — хорды,
1) Соединим центр окружности с концами хорд.
2) Треугольники AOB и COD — равнобедренные с основаниями AB и CD (AO=BO=CO=DO как радиусы).
Значит, их высоты OF и OK являются также медианами. Следовательно,
3) Рассмотрим треугольник AOF, где ∠AFO=90 º.
4) Рассмотрим треугольник COK, где ∠CKO=90 º.
🌟 Видео
Задание 24 ОГЭ по математике #6Скачать
Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать
Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
УЦИ как найти центр отверстия детали?..Скачать
Окружность. 7 класс.Скачать
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать
ОГЭ вариант-4 #24Скачать
7 класс. Геометрия. Теорема о перпендикулярности диаметра и хорды. 07.04.2020.Скачать
ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать
Как найти диаметр окружности, зная длину хорды и расстояние от центра окружности до неё? #огэ #егэСкачать
Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать
ОГЭ Задание 26 Окружность, хорды Иррациональное уравнениеСкачать