Линия пересечения двух треугольников

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

Линия пересечения двух треугольников

2. Строим проекции треугольника EDK.

Линия пересечения двух треугольников

3. Находим точку пересечения стороны АС с треугольником EDK

Линия пересечения двух треугольников

4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

Линия пересечения двух треугольников

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

Линия пересечения двух треугольников

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

Линия пересечения двух треугольников

7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

Линия пересечения двух треугольников

8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Чертежик

Метки

Линия пересечения двух треугольников

Линия пересечения двух треугольников

Видео:Построение линии пересечения двух треугольников.Скачать

Построение линии пересечения двух треугольников.

Точки пересечения треугольников пошаговое выполнение

Точки пересечения треугольников определяются в следующем порядке:

1.) Согласно заданию строятся точки по координатам.

Линия пересечения двух треугольников

2.) Теперь важным шагом является определение плоскости относительно которой будем искать точки пересечения треугольников.

Вы можете сказать: «можно найти точки относительно плоскости АВС», но нет. Почему!? Я объясню, посмотрев на рисунок, расположенный внизу, можно увидеть что треугольник D2E2F2, а точнее две стороны пересекают треугольник А2В2С2 в четырех точках, соответственно используем треугольник D2E2F2,как опорную плоскость.

  • Сторона D2E2 пересекает плоскость А2В2С2 в точках 1 2 и 2 2, эти точки переносим на нижнее изображение: на стороны относительно которых они были найдены и обозначаем 1 1 и 2 1.
  • Точки 1 1 и 2 1 соединяются.
  • Прямая 1 1 2 1 пересекает сторону D1E1 в точке, обозначим Р1 (первая точка найдена).

Линия пересечения двух треугольников

3.) Сторона E2F2 пересекает стороны B2C2 и A2C2 в точках 4 2 и 3 2. Опускаем их на нижний рисунок и обозначаем 4 1 и 3 1.

Линия пересечения двух треугольников

4.) Соединяются точки 3 1 и 4 1.

Линия пересечения двух треугольников

5.) Продливается прямая 3 1 4 1 до пересечения с отрезком E1F1. В месте пересечения ставим точку и обозначаем Н.

Линия пересечения двух треугольников

6.) Точки P1 и H соединяются. Полученная прямая P1H пересекает отрезок А2С2 в точке K1 (найдена вторая точка).

Линия пересечения двух треугольников

7.) Переносятся точки P1 и K1, расположенные на отрезках D1E1 и E1F1, на отрезки D2E2 и E2F2. И обозначаются P2 и K2.

Линия пересечения двух треугольников

8.) Соединяются P2 и K2.

Линия пересечения двух треугольников

9.) А теперь главный момент: указать видимые и невидимые стороны.

Посмотрите на рисунок снизу. На нем точки D, F, B, C и E находятся в двух проекциях «свободно», но не точка A. Соответственно, относительно ее и необходимо начинать чертить линии.

Линия пересечения двух треугольников

Пример выполненной работы на эту тему смотрите здесь.

Немного добавлю по этой статье: «Точки пересечения треугольников»

По своему опыту скажу: «чтобы начертить подобный чертеж, необходимо обладать пространственным воображением» и понимать, относительно какой плоскости отталкиваться для решения подобной задачи. Но благодаря этой статьи надеюсь у Вас получится разобраться с темой: пересечение плоских фигур.

Видео:Линия пересечения плоскостейСкачать

Линия пересечения плоскостей

Построение линии пересечения плоскостей, заданных различными способами

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.

Линия пересечения двух треугольников

  1. Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
  3. Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
  5. Через L1 и L2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Видео:Построение линии пересечения двух треугольников в 3D Autocad.Скачать

Построение линии пересечения двух треугольников в 3D Autocad.

Пересечение плоскостей, заданных следами

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.

Линия пересечения двух треугольников

  1. Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
  2. Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
  3. Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Видео:Нахождение пересечения двух треугольниковСкачать

Нахождение пересечения двух треугольников

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

Линия пересечения двух треугольников

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f и 5»=A»С»∩f, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
  2. Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f на одной линии связи с N’.

Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  • Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
  • Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.

    Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.

    🎦 Видео

    Построение линии пересечения двух треугольников. Анимация.Скачать

    Построение линии пересечения двух треугольников. Анимация.

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2Скачать

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2

    Построить линию пересечения треугольников ABC и DEF. Вариант 9Скачать

    Построить линию пересечения треугольников ABC и DEF. Вариант 9

    Взаимное пересечение двух плоскостейСкачать

    Взаимное пересечение двух плоскостей

    Построение линии пересечения двух треугольниковСкачать

    Построение линии пересечения двух треугольников

    Начертательная геометрия 1 курс. Построить линию пересечения треугольников ABC и EDKСкачать

    Начертательная геометрия 1 курс. Построить линию пересечения треугольников ABC и EDK

    Построить линию пересечения двух треугольников.Скачать

    Построить линию пересечения двух треугольников.

    Линия пересечения треугольников.Скачать

    Линия пересечения треугольников.

    Построение линии пересечения двух плоскостейСкачать

    Построение линии пересечения двух плоскостей

    Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

    Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

    Линия пересечения двух треуг-ов. Способ: по точкам пересечения сторон одного треугольника с другим.Скачать

    Линия пересечения двух треуг-ов. Способ: по точкам пересечения сторон одного треугольника с другим.

    Построить линию пересечения треугольников ABC и DEF. Вариант 10Скачать

    Построить линию пересечения треугольников ABC и DEF. Вариант 10

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 4Скачать

    Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 4

    Нахождение линии пересечения плоскостей путём приглашения плоскостей посредниковСкачать

    Нахождение линии пересечения плоскостей путём приглашения плоскостей посредников

    Построить линию пересечения треугольника и параллелограмма.Скачать

    Построить линию пересечения треугольника и параллелограмма.
    Поделиться или сохранить к себе: