- Метки
- Линия пересечения плоскостей двух треугольников
- Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях. Определить натуральную величину треугольника ABC.
- Построение линии пересечения плоскостей, заданных различными способами
- Пересечение плоскостей, заданных следами
- Пересечение плоскостей треугольников
- 💥 Видео
Метки
Видео:Построение линии пересечения двух треугольников.Скачать
Линия пересечения плоскостей двух треугольников
Линия пересечения плоскостей двух треугольников начинают с построения точек по координатам. (на рисунке 1 представлены построенные плоскости)
1. Построение по координатам.
2. Выбираете какая из сторон плоскостей будет секущей . В данном случае возьмем Е2D2 ,принадлежащая плоскости Е2D2F2, которая пересекает плоскость А2В2С2 в точка 12 и 22.
Полученные точки, проецируют на стороны плоскости, которым они принадлежат, т.е С1В1 и А1В1.
Т.к. секущей является ЕD, то необходимо чтобы прямая 1121 пересекла секущую. В данном случае в точке К1.(Первая точка найдена)
3. Одной точки мало будет. Повторим действия, описанные в пункте 2, но с отрезком E2F2.
E2F2 пересекает А2В2С2 в точках 32 и 42. Проецируете на стороны А1С1 и А1В1.
Т.к. секущей является EF, то необходимо чтобы прямая 3141 пересекла секущую, но такого нет (не хватает немного отрезка). Для этого прямая 3141 продливается пока не пересечется с E1F1. Обозначаете точку (обозначил Н1).(Но Н1 не является точкой пересечения, потому как на виде сверху принадлежит только одной плости)
4. Соединяются точки К1 и Н1. Ближайшая точка, принадлежащая этой прямой и двум плоскостям, находится на стороне А1В1 плоскости А1В1С1, обозначаем Р1. (Вторая точка найдена)
5. Найденные точки необходимо спроецировать на стороны плоскости, которым они принадлежат.
5. Обводите соответсвующими линиями контуры плоскостей, воспользовавшись методом конкурирующих точек.
Видео:Линия пересечения плоскостейСкачать
Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.
1. Строим проекции треугольника АВС.
2. Строим проекции треугольника EDK.
3. Находим точку пересечения стороны АС с треугольником EDK
4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN
5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.
6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.
7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.
Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.
8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.
Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Построение линии пересечения плоскостей, заданных различными способами
Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.
Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.
- Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
- Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
- Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
- Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
- Через L1 и L2 проводим искомую прямую l.
Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.
Видео:Построить линию пересечения треугольников ABC и DEF. Определить видимость. Вариант 2Скачать
Пересечение плоскостей, заданных следами
Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.
- Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
- Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
- Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.
Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.
Видео:Нахождение пересечения двух треугольниковСкачать
Пересечение плоскостей треугольников
Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.
- Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f0σ. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f0σ и 5»=A»С»∩f0σ, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
- Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f0σ на одной линии связи с N’.
Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f0τ. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.
Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.
Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.
💥 Видео
Пересечение плоскостей (треугольника и четырёхугольника)Скачать
[Начертательная геометрия 1 курс] Пересечение двух плоскостей заданных треугольникамиСкачать
Взаимное пересечение двух плоскостейСкачать
Построение линии пересечения двух треугольников. Анимация.Скачать
Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
Построить линию пересечения треугольников ABC и DEF. Вариант 9Скачать
Начертательная геометрия 1 курс. Построить линию пересечения треугольников ABC и EDKСкачать
[Начертательная геометрия] Линия пересечения плоскостейСкачать
Построение линии пересечения двух плоскостейСкачать
Пересечение плоскостейСкачать
Нахождение точки пересечения прямой и треугольникаСкачать
Пересечение прямой линии с плоскостью Определение видимости прямойСкачать
Нахождение линии пересечения плоскостей путём приглашения плоскостей посредниковСкачать
Построить линию пересечения треугольника и параллелограмма.Скачать