Пересечение конуса и окружности

Чертежик
Содержание
  1. Метки
  2. Пересечение конуса и сферы пошаговое построение
  3. Лекция 7. Поверхности
  4. 7.1. Поверхности. Образование и задание поверхности на чертеже
  5. 7.2. Поверхности вращения
  6. 7.3. Цилиндрическая поверхность
  7. 7.4. Пересечение прямой с поверхностью прямого кругового цилиндра
  8. Упражнение
  9. 7.5. Пересечение прямой с поверхностью наклонного цилиндра
  10. Упражнение
  11. 7.6. Сферическая поверхность
  12. Упражнение
  13. 7.7. Пересечение прямой с поверхностью сферы
  14. Упражнение
  15. 7.8. Коническая поверхность
  16. 7.9. Пересечение прямой с поверхностью конуса
  17. 7.10. Пересечение цилиндра плоскостью
  18. 7.11. Пересечение сферы плоскостью
  19. 7.12. Пересечение конуса плоскостью
  20. 7.13. Задачи для самостоятельной работы
  21. Взаимное пересечение поверхностей в начертательной геометрии с примерами
  22. Взаимное пересечение поверхностей
  23. Пересечение двух многогранников
  24. Пересечение гранной и кривой поверхности
  25. Пересечение двух кривых поверхностей. Метод вспомогательных секущих плоскостей
  26. Пересечение поверхностей вращении. Метод вспомогательных секущих сфер
  27. Теорема Монжа
  28. Пересечение поверхностей вращения с многогранниками
  29. Пересечение поверхностей вращения
  30. Способ вспомогательных секущих плоскостей
  31. Пересечение цилиндрической и торовой поверхности
  32. Особые случаи пересечения
  33. Пересечение соосных поверхностей вращения
  34. Теорема Монжа для пересекающихся поверхностей вращения
  35. Способ вспомогательных секущих сфер
  36. Способ вспомогательных секущих плоскостей
  37. Способ вспомогательных сфер
  38. Элементы технического рисования
  39. Взаимное пересечение поверхностей с примерами
  40. Способ вспомогательных параллельных плоскостей
  41. Способ вспомогательных сфер
  42. Способ концентрических сфер

Метки

Пересечение конуса и окружности

Пересечение конуса и окружности

Видео:Метод эксцентрических сферСкачать

Метод эксцентрических сфер

Пересечение конуса и сферы пошаговое построение

Пересечение конуса и сферы в данной статье выполняется методом вспомогательных секущих плоскостей. Ниже представлено задание на определение линии пересечения фигур.

Пересечение конуса и окружности

Порядок построения на пересечение конуса и сферы:

Первоначально находятся точки в нижнем изображении, затем полученные точки переносятся в верхнее изображение.

1.) Чертятся фигуры согласно заданию.

Пересечение конуса и окружности

2.) Строятся и подписываются вспомогательные секущие плоскости. Можно указать первую точку, она находится в верхней части соприкосновения фигур. Смотрите на рисунок снизу.

Пересечение конуса и окружности

3.) Плоскость «а» пересекает две фигуры (обозначено синим цветом). Чертятся окружности (синим цветом показаны) на нижнем изображении, опущенные от крайних точек фигур. В месте пересечения ставятся точки.

Пересечение конуса и окружности

4.) Плоскость «m» (имеет сиреневый цвет) пересекла данные фигуры. В нижнем изображении также чертятся окружности (сиреневый цвет) и в месте пересечения указываются точки.

Пересечение конуса и окружности

5.) Плоскость «n». Повторяются операции выполняемых в пунктах 4 и 3.

Пересечение конуса и окружности

6.) Указывают последнюю точку, расположенная в нижней части пересечения фигур

Пересечение конуса и окружности

7.) Все найденные точки переносятся из нижнего изображения в верхнее. Для более понятного представления я не зря показал линии разными цветами.

Пересечение конуса и окружности

Пересечение конуса и окружности

8.) Соединяются точки плавной линией. Соединив, можно уже увидеть как выглядит линия пересечения.

Пересечение конуса и окружности

9.) Завершающим шагом является удаление всех дополнительных линий с последующим обведением контуров фигур.

Не стоит забывать про видимые и невидимые линии чертежа и их применение.

Кода все сделано, можно взглянуть на полученный чертеж.

Видео:Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Лекция 7. Поверхности

Видео:Пересечение конуса и сферы. Пошаговое видео. Инженерная графикаСкачать

Пересечение конуса и сферы. Пошаговое видео. Инженерная графика

7.1. Поверхности. Образование и задание поверхности на чертеже

Поверхности составляют широкое многообразие объектов трехмерного пространства. Инженерная деятельность человека связана непосредственно с проектированием, конструированием и изготовлением различных поверхностей. Большинство задач прикладной геометрии сводится к автоматизации проектно-конструкторского процесса и воспроизведения сложных поверхностей. Способы формообразования и отображения поверхностей составляют основу инструментальной базы трехмерного моделирования современных систем автоматизированного проектирования.

Рассматривая поверхности как непрерывное множество точек, между координатами которых может быть установлена зависимость, определяемая уравнением вида F(x,y,z)=0, можно выделить алгебраические поверхности (F(x,y,z)— многочлен n-ой степени и трансцендентные (F(x,y,z)— трансцендентная функция.

Если алгебраическая поверхность описывается уравнением n-й степени, то поверхность считается поверхностью n-го порядка. Произвольно расположенная секущая плоскость пересекает поверхность по кривой того же порядка (иногда распадающейся или мнимой), какой имеет исследуемая поверхность. Порядок поверхности может быть определен также числом точек её пересечения с произвольной прямой, не принадлежащей целиком поверхности, считая все точки (действительные и мнимые).

Поверхность можно рассматривать, как совокупность последовательных положений l1,l2 линии l перемещающейся в пространстве по определенному закону (Рисунок 7.1). В процессе образования поверхности линия l может оставаться неизменной или менять свою форму — изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в виде одной линии или целого семейства линий (m, n, p…).

Подвижную линию принято называть образующей (li), неподвижные – направляющими (m). Такой способ образования поверхности принято называть кинематическим .

Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несёт на себе «отпечаток» режущей кромки резца, т.е. её поверхность можно рассматривать как множество линий конгруэнтных профилю резца.

Пересечение конуса и окружности
Рисунок 7.1 — Кинематическая поверхность

По виду образующей различают поверхности линейчатые и нелинейчатые , образующая первых – прямая линия, вторых – кривая.

Линейчатые поверхности в свою очередь разделяют на развертывающиеся , которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся .

Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Такие поверхности носят название циклические (Рисунок 7.2).

Пересечение конуса и окружности
Рисунок 7.2 — Циклическая поверхность

Если группировать поверхности по закону движения образующей линии, то большинство встречающихся в технике поверхностей можно разделить на:

  • поверхности вращения;
  • винтовые поверхности;
  • поверхности с плоскостью параллелизма;
  • поверхности параллельного переноса.

Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов).

Для графического изображения поверхности на чертеже используется её каркас.

Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности .

Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом .

Проекции каркаса могут быть построены, если задан определитель поверхности – совокупность условий, задающих поверхность в пространстве и на чертеже.

Различают две части определителя: геометрическую и алгоритмическую.

Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности.

Вторая часть – алгоритмическая (описательная) – содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу.

Например, циклическая поверхность, каркас которой состоит из восьмиугольников (Рисунок 7.3), может быть задан следующим образом:

  • Геометрическая часть определителя: три направляющих l, m, n.
  • Алгоритмическая часть: выбираем плоскость α; находим точки А, В, С, в которых α пересекает соответственно направляющие l, m, n. Строим восьмиугольник, определяемый тремя найденными точками. Переходим к следующей плоскости и повторяем построение

Пересечение конуса и окружности
Рисунок 7.3 –Образование циклической поверхности

Видео:Пересечение конуса и полусферыСкачать

Пересечение конуса и полусферы

7.2. Поверхности вращения

Поверхностями вращения называются поверхности, полученные вращением образующей вокруг неподвижной оси (Рисунок 7.5).

Цилиндрическая и коническая поверхности бесконечны (т.к. бесконечны образующие); сферическая, торовая поверхности — конечны.

Сферическая поверхность – частный случай торовой поверхности. При вращении окружности вокруг осей б, в, г (Рисунок 7.4, а) получим торовую поверхность (Рисунок 7.4, б), а вокруг оси а – сферическую.

Пересечение конуса и окружности

Рисунок 7.4 – Образование поверхностей вращения

Пересечение конуса и окружности

Рисунок 7.5 – Элементы поверхности вращения

Каждая точка образующей линии при вращении вокруг оси описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения. Эти окружности называются параллелями (Рисунок 7.5).

Наименьшая параллель называется горлом , наибольшая – экватором .

Линия пересечения поверхности вращения плоскостью, проходящей через ось, называется меридианом .

Линия пересечения поверхности вращения плоскостью, проходящая через ось, параллельно фронтальной плоскости проекций, называется главным меридианом .

Видео:Лекция 12. Пересечение поверхностей метод плоскостейСкачать

Лекция 12. Пересечение поверхностей метод плоскостей

7.3. Цилиндрическая поверхность

Цилиндрическая поверхность образуется движением прямой линии, которая в любом своём положении параллельна данному направлению и пересекает криволинейную направляющую (Рисунок 7.6).

Цилиндр – геометрическое тело, ограниченное замкнутой цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими все образующие данной поверхности.

Взаимно параллельные плоские фигуры, ограниченные цилиндрической поверхностью, называются основаниями цилиндра .

Если нормальное сечение (плоскость сечения перпендикулярна образующим) имеет форму окружности, то цилиндрическая поверхность называется круговой .

Если образующие цилиндрической поверхности перпендикулярны к основаниям, то цилиндр называется прямым, в противном случае – наклонным .

Рассмотрим проецирование прямого кругового цилиндра и принадлежащей ему точки F.

Условимся, что фронтальная проекция точки F – невидима (Рисунок 7.6).

Пересечение конуса и окружности

Рисунок 7.6 – Проецирование цилиндра на плоскости проекций

Горизонтальная и профильная проекции точки F будут видимы.

При определении видимости, образующие, которые находятся на части, обращённой к наблюдателю и обозначенной на π1 сплошной зелёной линией – на плоскости проекции π2 видны, а которые находятся на части, обозначенной толстой штриховой линией – видны на π3.

Пусть точка А на π2 видима (Рисунок 7.7). Тогда на π1 она будет видима, а на π3 невидима.

Пересечение конуса и окружности
Рисунок 7.7 – Эпюр прямого кругового цилиндра и принадлежащих ему точек

Видео:Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

7.4. Пересечение прямой с поверхностью прямого кругового цилиндра

Для построения точек пересечения прямой линии с поверхностью прямого кругового цилиндра не требуется дополнительных построений. На горизонтальной плоскости проекций точки пересечения (1 и 2) находятся сразу. Фронтальные проекции строим по линиям связи.

Но в общем случае, алгоритм решения рассмотрим на следующем упражнении.

Пересечение конуса и окружности
Рисунок 7.8 – Пересечение прямой с поверхностью прямого кругового цилиндра

Видео:Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

Упражнение

Заданы: прямой круговой цилиндр с осью вращения, перпендикулярной плоскости проекций π1 и прямая а общего положения (Рисунок 7.8).

Построить точки пересечения прямой а с поверхностью цилиндра.

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

  1. Заключить прямую во вспомогательную секущую плоскость частного положения σ (горизонтально-проецирующую).
  2. Построить фигуру пересечения поверхности цилиндра горизонтально-проецирующей плоскостью: результат пересечения — четырехугольник (на π2 условно заштрихован).
  3. Найти точки «входа» и «выхода» прямой: на пересечении её фронтальной проекции с фронтальными проекциями сторон четырёхугольника (они же — проекции образующей цилиндра);

Прямая а пересекается со сторонами сечения в двух точках – 1 и 2.

Определим видимость участков прямой: очевидно, что между точками 1-2 прямая невидима, а на плоскости проекций π2 будет ещё невидим участок прямой от точки 1 до левой крайней образующей.

Видео:Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)Скачать

Линия пересечения поверхностей конуса и сферы (метод секущих плоскостей)

7.5. Пересечение прямой с поверхностью наклонного цилиндра

Видео:Пересечение двух поверхностей вращения - конуса и цилиндраСкачать

Пересечение двух поверхностей вращения - конуса и цилиндра

Упражнение

Заданы : наклонный круговой цилиндр с осью вращения, наклонной к плоскости проекций π1 и прямая mобщего положения (Рисунок 7.9).

Построить точки пересечения прямой mс поверхностью цилиндра.
Решение :

Для построения точек пересечения прямой с поверхностью цилиндра необходимо:

Пересечение конуса и окружности

Рисунок 7.9 – Пересечение прямой с наклонным цилиндром

  1. Заключить прямую m во вспомогательную плоскость σ, дающую в сечении наиболее простую фигуру – четырехугольник (σ параллельна оси цилиндра или образующим). Эту плоскость зададим двумя пересекающимися прямыми m∩(1M);
  2. Построить горизонтальный след плоскости σ (прямую пересечения σ с плоскостью проекций π1) как проходящую через горизонтальные следы прямых m и (1M) (точки пересечения прямых с плоскостью проекций π1 (основания)) – (MN);
  3. Найти точки пересечения MN с окружностью основания цилиндра. Через эти точки провести образующие r, по которым плоскость σ пересекает боковую поверхность цилиндра:

На анимации ниже представлена последовательность построения точек пересечения прямой с наклонным цилиндром.

Пересечение конуса и окружности

Видео:Пересечение конуса и цилиндраСкачать

Пересечение конуса и цилиндра

7.6. Сферическая поверхность

Сферическая поверхность – поверхность, образованная вращением окружности вокруг отрезка, являющегося её диаметром.

Шаром называется тело, ограниченное сферической поверхностью.

Экватор – это окружность, которая получается пересечением сферы горизонтальной плоскостью, проходящей через ее центр (Рисунок 7.10).

Меридиан – это окружность, которая получается пересечением сферы плоскостью, перпендикулярной плоскости экватора и проходящей через центр сферы.

Параллелями называются окружности, которые получаются пересечением сферы плоскостями, параллельными плоскости экватора.

Пересечение конуса и окружности
Рисунок 7.10 – Проецирование сферической поверхности

Прямоугольная проекция шара (сферы) на любую плоскость – есть окружность, которую часто называют очерковой .

Пересечение конуса и окружности
Рисунок 7.11 – Эпюр сферы и принадлежащих ей точек

Видео:Пересечение конусовСкачать

Пересечение конусов

Упражнение

Заданы: сферическая поверхность тремя проекциями (Рисунок 7.11) и фронтальные проекции точек 1, 2, 3, 4.

Необходимо построить горизонтальные и профильные проекции заданных точек.

  • Проанализируем их расположение на поверхности сферы. Точки 1, 2, 3 лежат на очерковых образующих сферы.
  • Точка 1 принадлежит главному меридиану (очерковой окружности на π2), проекция которого на π1 совпадает с проекцией горизонтальной оси, на π3 – с проекцией вертикальной оси.
  • Недостающие проекции точки 1 находим посредством линий проекционной связи. Все проекции точки 1 видимы.
  • Рассмотрим положение точки 2. Точка 2 принадлежит экватору (очерковой окружности на π1), проекции которого на π2 и π3 совпадают с проекцией горизонтальной оси. Горизонтальная проекция точки 2 строится посредством линии проекционной связи, для построения профильной проекции необходимо измерить расстояние, отмеченное дугой, и отложить его по линии связи от точки О3 вправо. Профильная проекция точки 2 невидима.
  • Точка 3 принадлежит очерковой окружности на π3, которая также является меридианом, проекции которого на π2 и π1 совпадают с проекцией вертикальной оси. Профильная проекция точки строится посредством линии проекционной связи. Для построения горизонтальной проекции точки 3 необходимо расстояние, отмеченное на π3 двумя засечками, отложить на π1 вверх от точки О1. Горизонтальная и профильная проекции точки 3 видимы.
  • Для построения проекций точки 4 необходимо ввести вспомогательную секущую плоскость (зададим плоскость σ//π1 и σ⊥π2). Плоскость σ пересекает поверхность сферы по окружности радиусом r. На π1 строим данное сечение и по линии проекционной связи находим 41. Для построения профильной проекции необходимо расстояние, отмеченное засечкой, отложить по линии проекционной связи на π3 вправо от оси. Все проекции точки 4 видимы.

Видео:2 3 проекция точки на конусеСкачать

2 3 проекция точки на конусе

7.7. Пересечение прямой с поверхностью сферы

Видео:[Начертательная геометрия] Пересечение конуса и сферыСкачать

[Начертательная геометрия] Пересечение конуса и сферы

Упражнение

Заданы: сфера и прямая общего положения АВ.

Найти: точки пересечения прямой с поверхностью сферы (точки «входа» и «выхода»).

Чтобы найти точки пересечения прямой с поверхностью сферы необходимо:

  1. Заключить прямую во вспомогательную плоскость, пересекающую поверхность сферы так, чтобы получались простые фигуры (например, круг, ограниченный окружностью);
  2. Построить фигуру пересечения сферы вспомогательной плоскостью;
  3. Найти общие точки прямой и контура фигуры (окружность): так как прямая и окружность лежат в одной плоскости, то они, пересекаясь, образуют точки, общие для прямой и сферы, которые и будут являться искомыми точками (Рисунок 7.12).

  • Через прямую проводим плоскость σ. Пусть σ⊥π1 и пересекает сферу по окружности радиусом r. С – центр окружности сечения ОС⊥σ:

Пересечение конуса и окружности

Рисунок 7.12 – Пересечение прямой с поверхностью сферы

  • Введём π3⊥π1 и π3//σ1. Построим проекцию окружности сечения на π3 и проекцию А3В3.
  • Находим точки их пересечения 12 и 23.
  • Определим видимость участков прямой.
  • На π1 точки 1 и 2 находятся на переднем полушарии, следовательно, на π2 они видимы.

Видео:Пересечение поверхностей. Построение линии пересечения.Скачать

Пересечение поверхностей. Построение линии пересечения.

7.8. Коническая поверхность

Коническая поверхность образуется движением прямой линии (образующей), которая в любом своем положении проходит через неподвижную точку и пересекает криволинейную направляющую (имеет две полости).

Тело, ограниченное замкнутой конической поверхностью вершиной и плоскостью, называется конусом .

Плоская фигура, ограниченная конической поверхностью, называется основанием конуса .

Часть конической поверхности, ограниченная вершиной и основанием, называется боковой поверхностью конуса .

Если основание конуса является кругом, то конус называется круговым .

Если вершина конуса расположена на перпендикуляре к основанию, восстановленному из его центра, то конус называется прямым круговым .

Пересечение конуса и окружности

Рисунок 7.13 – Принадлежность точки конической поверхности

Рассмотрим вопрос принадлежности точки А поверхности конуса.
Дана фронтальная проекция точки А и она видима (Рисунок 7.13).

1 способ . Для построения ортогональных проекций точки, расположенной на поверхности конуса, построим проекции образующей, проходящей через данную точку. При таком положении точки А все её проекции – видимы.

2 способ . Точка А лежит на параллели конуса радиусом r. На π1 строим проекцию окружности (параллели) и по линии проекционной связи находим А1. По двум проекциям точки строим третью.

Видео:Пересечение конуса и сферыСкачать

Пересечение конуса и сферы

7.9. Пересечение прямой с поверхностью конуса

Пусть задан прямой круговой конус и прямая общего положения m (Рисунок 7.14). Найти точки «входа» и «выхода» прямой с поверхностью конуса.

  1. Через прямую m проводим вспомогательную секущую плоскость σ, дающую в сечении наиболее простую фигуру.
  2. Применение в качестве вспомогательной секущей плоскости проецирующей плоскости в данном случае нецелесообразно, так как в сечении получится кривая второго порядка, которую нужно строить по точкам.

Наиболее простая фигура – треугольник. Для этого секущая плоскость σ должна пройти через вершину S. Плоскость зададим с помощью двух пересекающихся прямых σ=SM∩MN или, что, то же самое, (σ=SM∩m).

  1. Возьмем на прямой m точку А и соединим её с вершиной. Прямая SA пересечёт плоскость основания в точке М.
  2. Построим горизонтальные проекции этих объектов.
  3. Продлим фронтальную проекцию прямой m до пересечения с плоскостью основания в точке N.

Пересечение конуса и окружности

Рисунок 7.14 – Построение точек пересечения прямой с поверхностью конуса

  1. Построим её горизонтальную проекцию.
  2. Соединим точки M1N1, на пересечении с окружностью основания получим точки 1 и 2.
  3. Строим треугольник сечения конуса плоскостью σ, соединив точки 1 и 2 с вершиной S.
  4. На пересечении образующих 1-S и 2-S с прямой m получим искомые точки K и L.
  5. Определим видимость прямой относительно поверхности конуса.

На анимации ниже представлена последовательность построения точек пересечения прямой с поверхностью конуса.

Пересечение конуса и окружности

Видео:Линия пересечения двух поверхностей конус и призма (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и призма (Метод секущих плоскостей)

7.10. Пересечение цилиндра плоскостью

Пусть плоскость сечения γ – фронтально-проецирующая (Рисунок 7.15).

  1. Если плоскость сечения γ параллельна оси цилиндра, то она пересекает цилиндр по четырехугольнику.
  2. Если плоскость сечения γ перпендикулярна оси цилиндра, то она пересекает цилиндр по окружности.
  3. Если плоскость сечения γ не параллельна и не перпендикулярна оси цилиндра в сечении эллипс.

Рассмотрим алгоритм построения сечения – эллипс (Рисунок 7.15):

Пересечение конуса и окружности

Рисунок 7.15 – пересечение цилиндра плоскостью

  1. Находим и строим характерные точки (точки, не требующие дополнительных построений) – в нашем случае, точки принадлежащие крайним образующим – 1, 3, 5, 7. Одновременно с этим, данные точки определяют величину большой и малой оси эллипса.
  2. Для построения участка эллипса необходимо построить не менее 5-ти точек (так как лекальная кривая второго порядка определяется как минимум пятью точками). Для построения точек 2, 4, 6, 8 возьмем на π1 произвольно расположенные образующие цилиндра, которые проецируются на данную плоскость проекции в точки.
  3. Построим вторые проекции данных образующих. Из точек пересечения вторых проекций образующих с проекцией плоскости сечения γ проводим линии связи к π3. Для построения третьей проекции, например, точки 6 измеряем расстояние Δ1 и откладываем его по соответствующей линии связи на π3. Симметрично ей, относительно оси вращения, строим точку 4. Аналогично строятся другие точки.

Видео:Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1

7.11. Пересечение сферы плоскостью

Плоскость пересекает поверхность сферы всегда по окружности. Задачу пересечения плоскости со сферой мы рассматривали при решении задачи построения точек пересечения прямой с поверхностью сферы (см. выше).

Видео:Задачи 4.3.10 и 4.3.11.Скачать

Задачи 4.3.10 и 4.3.11.

7.12. Пересечение конуса плоскостью

Рассмотрим пять возможных вариантов расположения плоскости относительно поверхности прямого кругового конуса. Пусть плоскость сечения перпендикулярна плоскости проекций π2 (Рисунок 7.16).

Пересечение конуса и окружности

  1. Если плоскость проходит через вершину (1) – в сечении две образующие и прямая пересечения с плоскостью основания.
  2. Если плоскость перпендикулярна оси вращения конуса (2) – в сечении окружность.
  3. Если плоскость не параллельна ни одной образующей (пересекает все образующие (3)) – в сечении эллипс.
  4. Если плоскость параллельна одной образующей конуса – в сечении парабола (на примере – плоскость сечения (4) параллельна крайней образующей конуса).
  5. Если плоскость параллельна двум образующим (пересекает обе полости конической поверхности (5)) – в сечении гипербола (рисунок 7.17).

Пересечение конуса и окружности
Рисунок 7.17. Плоскость сечения параллельна двум образующим конуса

Ниже, на моделях, представлены варианты положения секущей плоскости относительно поверхности конуса, при которых получаются сечения в виде эллипса, параболы и гиперболы.

Пересечение конуса и окружности

Рисунок 7.18 – Сечение конической поверхности плоскостью (а — эллипс, б — парабола, в — гипербола)

Рассмотрим пример построения сечения конической поверхности плоскостью.

Пересечение конуса и окружности

Рисунок 7.19 – Построение пересечения конической поверхности плоскостью

Пусть задана секущая проецирующая плоскость σ⊥π2 (Рисунок 7.19). Если продлить коническую поверхность и проекцию плоскости, то видно, что плоскость пересекает вторую ветвь конической поверхности, следовательно, в сечении получится гипербола.

  1. Построим характерные точки. Это точки, лежащие на крайних образующих и на окружности основания конуса (1, 2, 3). Их проекции строятся по линиям проекционной связи.
  2. Для построения промежуточных точек, воспользуемся методом вспомогательных секущих плоскостей. Введём плоскость α⊥π2 и перпендикулярно оси вращения, что даст в сечении окружность радиусом r. Строим эту окружность на π1. Плоскость α пересекает и заданную плоскость сечения по прямой, проекции которой на π1 и π3 совпадают с линиями проекционной связи.
  3. На пересечении этих двух сечений на плоскости проекций π1 строим точки 4, 5. Профильные проекции этих точек строим по линии проекционной связи, откладывая расстояние от оси вращения конуса, равное Δ.
  4. Аналогично строим точки 6, 7. Плавно соединим построенные точки, образуя гиперболу.
  5. Обведём то, что осталось от конуса после такого среза с определением видимости. В нашем примере все проекции построенной кривой будут видимы.

На анимации ниже представлена последовательность построения пересечения конической поверхности плоскостью.

Пересечение конуса и окружности

Видео:Метод концентрических сферСкачать

Метод концентрических сфер

7.13. Задачи для самостоятельной работы

1. Достроить проекции сферы с заданным вырезом (Рисунок 7.20).
Пересечение конуса и окружности
Рисунок 7.20
2-3. Построить три проекции конуса с призматическим отверстием (Рисунки 7.21, 7.22).
Пересечение конуса и окружности
Рисунок 7.21
Пересечение конуса и окружности
Рисунок 7.22
4. Построить точки «входа» и «выхода» прямой при пересечении её с поверхностью полусферы (Рисунок 7.23).
Пересечение конуса и окружности
Рисунок 7.23

Видео:Пересечение поверхностей конуса и сферы.Скачать

Пересечение поверхностей конуса и сферы.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Содержание:

Взаимное пересечение поверхностей:

Пересечение конуса и окружности

При пересечении поверхностей образуется линия, которую принято называть линией взаимного пересечения поверхностей. Эта линия пересечения принадлежит одновременно двум поверхностям. Поэтому построение линии пересечения сводится к определению точек одновременно принадлежащих обеим поверхностям. Для нахождения таких точек используется в общем случае метод вспомогательных секущих поверхностей. Сущность способа заключается в следующем: Пусть задано две поверхности Пересечение конуса и окружности

Общий алгоритм построения линии пересечения поверхностей:

  1. Введем вспомогательную поверхность Ф.
  2. Строим линии пересечения поверхности Ф с поверхностями Пересечение конуса и окружности
  3. Определяем точки пересечения К и М, простроенных линий a и b
  4. Многократно повторяя эту операцию, найдем ряд точек, принадлежащих одновременно двум поверхностям.
  5. Соединяем последовательно точки с учетом видимости.

В качестве посредников могут быть приняты как поверхности, так и плоскости, но целесообразно выбирать такие, которые дают наиболее простые линии пересечения с заданными поверхностями.

Взаимное пересечение поверхностей

Линия, общая для двух пересекающихся поверхностей — линия пересечения.

Чтобы определить проекцию линии пересечения, необходимо найти проекции точек, общих для этих поверхностей. Их находят способом вспомогательных секущих плоскостей или вспомогательных сфер.

Если рёбра призмы или ось вращения цилиндра перпендикулярны какой-либо из плоскостей проекций, то на этой плоскости проекций линия пересечения совпадает с контуром основания призмы или цилиндра.

Пересечение двух многогранников

Для построения линии пересечения двух многогранников необходимо определить точки пересечения ребер первого многогранника с гранями второго, затем ребер второго с гранями первого. Полученные точки соединить отрезками прямой с учетом видимости. На рисунке 9.2 заданы поверхности трехгранной призмы DEFD’E’F’ и трехгранной пирамиды SABC. Так как призма F, фронтально-проецирующая, фронтальная проекция линии пересечения совпадает с гранями призмы, поэтому необходимо построить только горизонтальную проекцию. Для этого определяем точки пересечения ребер пирамиды с гранями призмы. Ребро SC пересекает грани призмы в точках I и 2, ребро SB — в точках 3 и 4, ребро SA не пересекает призму. Затем определяем точки пересечения ребер призмы с гранями пирамиды.

Пересечение конуса и окружности

По чертежу видим, что только ребро DD’ пресекает поверхность пирамиды. Для определения точек пересечения 5 и б через ребро DD’ проводим горизонтальную плоскость, которая пересекает пирамиду по треугольнику. Точки 5 и 6 получаем, как пересечение DD’ с построенным треугольником.

Полученные точки соединяем с учетом видимости. Видимой считается тот отрезок прямой, который принадлежит двум видимым граням поверхностей.

Как видим, линия пересечения двух многогранников представляет собой пространственную ломаную линию.

В том случае, когда обе гранные поверхности общего положения, последовательность соединения точек вызывает затруднение. Поэтому для соединения точек используется диаграмма Ананова — условные развертки поверхностей (см. учебник).

Пересечение гранной и кривой поверхности

Линия пересечения гранной и кривой поверхности, представляет собой пространственную кривую линию, с точками излома на ребрах многогранника.

Поэтому сначала определяем точки пересечения ребер многогранника с кривой поверхностью, а затем промежуточные точки и соединяем их с учетом видимости. На рисунке 9.3 заданы поверхности трехгранной призмы и кругового конуса.

Пересечение конуса и окружности

Так как призма фронтально-проецирующая, фронтальная проекция линии пересечения совпадает с проекцией боковых граней призмы, поэтому необходимо построить только горизонтальную проекцию линии пересечения.

Сначала определяем точки пересечения ребер призмы Пересечение конуса и окружностис поверхностью конуса, а затем находим промежуточные точки, принадлежащие линиям пересечения. Для нахождения точек пересечения, используем горизонтальные плоскости посредники, так как они пересекают конус по окружностям, а призму но прямым линиям. Как видим, в данном случае линия пересечения распадается на две отдельные части.

Пересечение двух кривых поверхностей. Метод вспомогательных секущих плоскостей

Линия пересечения двух кривых поверхностей, представляет пространственную кривую линию. Поэтому для ее построения необходимо определить ряд точек принадлежащих этой лини.

На рисунке 9.4 заданы поверхности конуса и сферы. Точки строятся при помощи горизонтальных плоскостей посредников, которые рассекают обе поверхности но окружностям.

Обязательно находим опорные точки, к которым относятся высшая и низшая точки линии пересечения и точки границы видимости. Так как оси поверхностей лежат в одной фронтальной плоскости, контурные образующие поверхностей пересекаются в точках 1 и 2 — это и будет высшая и низшая точки. Точки границы видимости лежат на экваторе сферы, поэтому точки 3 и 3′ находим с помощью вспомогательной горизонтальной плоскости, проходящей через центр сферы. Она рассекает сферу по экватору, а конус но параллели радиуса R.

Пересечение конуса и окружности

Взаимно пересекаясь, они и дают точки 3 и 3′ фронтальную проекцию определяем по вертикальной линии связи на плоскости Пересечение конуса и окружностиЗатем берем еще две вспомогательные плоскости расположенные выше и ниже плоскости Пересечение конуса и окружностии выполняя, аналогичные построения определяем точки 4 и Пересечение конуса и окружности5 и 5′. Полученные точки соединяем с учетом видимости.

Пересечение поверхностей вращении. Метод вспомогательных секущих сфер

Способ вспомогательных секущих сфер применяется при следующих условиях:

  1. Пересекающиеся поверхности являются поверхностями вращения.
  2. Оси этих поверхностей пересекаются.
  3. Оси поверхностей параллельны одной из плоскостей проекций.

Перед рассмотрением этого способа разберем понятие соосных поверхностей. Соосными называются поверхности вращения, имеющие общую ось. Соосные поверхности пересекаются по окружностям перпендикулярным оси вращения.

На рисунке 9.5 приведены некоторые из них.

Именно то, что поверхности пересекаются по окружностям, которые проецируются в линии и используется в методе сфер. Пересечение конуса и окружности

Рассмотрим пример на рисунок 9.6. Даны поверхности вращения — конус и цилиндр. Так как оси лежат в одной плоскости, можно определить точки пересечения контурных образующих в точках 1 и 2, как в предыдущем примере.

Пересечение конуса и окружности

Однако, для нахождения промежуточных точек, вспомогательные секущие плоскости не подходят, т.к. горизонтальные плоскости рассекут цилиндр по эллипсам, фронтально-нроецирующие — конус по эллипсам. А сам эллипс строить непросто. Поэтому именно в этом случае удобно использовать в качестве посредников — сферы. За центр вспомогательных сфер, принимается точка пересечения осей заданных поверхностей. Далее необходимо определить, размеры радиусов вспомогательных секущих сфер. Максимальный радиус сферы

  • Пересечение конуса и окружности— это расстояние от центра сфер до наиболее удаленной точки пересечения контурных образующих (в данном случае точка 1). Минимальный радиус сферы Пересечение конуса и окружности— радиус сферы, которая вписана в одну из поверхностей, а другую пересекает.

В данном случае минимальная сфера вписана в конус. Минимальная сфера касается поверхности конуса по окружности, а цилиндр пересекает по окружности. Нужно, иметь ввиду, что проекции окружностей пересечения перпендикулярны осям вращения. Эти две окружности пересекаются в точке Пересечение конуса и окружности. Фактически таких точек две, они совпадают на фронтальной проекции. Для построения промежуточных точек берем вспомогательные сферы радиусов в пределах от Пересечение конуса и окружности

Они пересекают и поверхность цилиндра, и поверхность конуса по окружностям, которые пересекаясь даюг промежуточные точки. Полученные точки соединяются плавной линией.

Здесь построена только фронтальная проекция. Для построения горизонтальной проекции, если это необходимо, точки строят как лежащие на окружностях полученных радиусов.

Теорема Монжа

Рассмотрим вариант, когда минимальная сфера касается двух поверхностей вращения. В этом случае для построения линии пересечения поверхностей используется теорема Г. Монжа, которая формулируется так:

Если две поверхности вращении второго порядка описаны около третьей или вписаны в нее, то линии их пересечении распадается на две плоские кривые второго порядка. Плоскости этих кривых проходит через прямую, соединяющую точки пересечении линий касании.

В соответствии с этой теоремой линии пересечения конуса и цилиндра описанного около сферы (рисунок 9.7) будут плоскими кривыми -эллипсами, фронтальные проекции которых изображаются прямыми Пересечение конуса и окружностипроходящими через Пересечение конуса и окружности— точки линий пересечения окружностей касания.

Пересечение конуса и окружности

Пересечение поверхностей вращения с многогранниками

Внешние и внутренние формы большинства предметов образуются сочетанием нескольких поверхностей. Пересекаясь между собой, они образуют линии, которые принято называть линиями перехода.

На рис. 9.1 изображена деталь с несколькими линиями перехода. Линия 1 является границей между плоской и торовой поверхностями, 2 — торовой и конической, 3 — конической и плоскими (гранями призмы), 4 и 5 — торовой поверхностью корпуса и цилиндрическими поверхностями патрубков.

Пересечение конуса и окружностиРисунок 9.1 – Корпус с линиями перехода

Линия пересечения многогранника с телом вращения в общем случае состоит из отдельных участков кривых линий, получающихся при пересечении граней многогранника с поверхностью вращения. Точки перехода от одного участка к другому находятся в пересечении ребер многогранника с телом вращения и называются точками излома. Участок линии пересечения может быть и прямой линией в случае пересечения линейчатой поверхности вращения гранью многогранника по образующей.

При проницании (полном пересечении) получаются две замкнутые линии пересечения. Они могут быть плоскими (поверхность вращения проницает одну грань) или пространственными, состоящими из нескольких плоских кривых с точками излома в местах пересечения поверхности вращения ребрами многогранника.

При врезании (неполном пересечении) получается одна замкнутая пространственная линия.

Таким образом, в соответствии с указанным выше, задачи данной темы решаются по следующему плану:

  • Определяются точки излома линии пересечения, являющиеся точками пересечения ребер многогранника с поверхностью вращения;
  • Находятся точки принадлежащие линиям пересечения отдельных граней многогранника с телом вращения. При этом сначала следует найти характерные (опорные) точки кривых. Это точки, проекции которых отделяют видимую часть проекции линии пересечения от невидимой, это проекции наивысших и наинизших точек линии пересечения, ближайших и наиболее удаленных, крайних слева и справа на проекциях линии пересечения;
  • Определение видимости линии пересечения поверхностей и их очерков. Видимость проекций участков линии пересечения определяется из условия расположения их на видимой стороне каждой поверхности.

При построении точек линии пересечения многогранников с телами вращения используют вспомогательные секущие плоскости. Их располагают так, чтобы они пересекали данные поверхности по простым для построения линиям (прямым или окружностям).

Рассмотрим линии пересечения поверхности прямой трехгранной призмы с поверхностью конуса вращения. Боковые грани призмы являются фронтально-проецирующими плоскостями, а ось конуса перпендикулярна горизонтальной плоскости проекций.

Призму можно рассматривать, как три плоскости, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом.

Пересечение конуса и окружности

Рисунок 9.2 — Пересечение трехгранной призмы с конусом

Пример. Построить линию пересечения поверхности тора с поверх-ностью трехгранной призмы (рис. 9.3).

Решение. Боковые грани призмы являются фронтально-проецирующими плоскостями и фронтальная проекция линии пересечения совпадают с проекцией боковой поверхности призмы. Из фронтальной проекции видно, что в данном случае имеет место проницание тора призмой (две замкнутые линии пересечения).

На рис. 9.3 рассмотрен пример пересечения поверхностей тора и треугольной призмы [2].

По двум заданным проекциям строим третью – профильную.

Пересечение конуса и окружности

Рисунок 9.3 – Построение линии пересечения трехгранной призмы с тором

Заданная призма – горизонтально-проецирующая. Так как грани призматического отверстия перпендикулярны горизонтальной плоскости проекций, то на чертеже известна горизонтальная проекция линии пересечения, она совпадает с вырожденной проекцией поверхности призмы.

Следовательно, линия пересечения совпадает с горизонтальной проекцией основания призмы.

Определяем характерные точки: самую близкую точку 1 фронтальной плоскостью Пересечение конуса и окружностии самые далекие – Пересечение конуса и окружностии 3 фронтальной плоскостью S (Пересечение конуса и окружности).

Определяем промежуточные точки 4 и 5 при помощи вспомогательных фронтальных плоскостей Пересечение конуса и окружности.

Соединяем полученные точки плавной кривой линией с учетом видимости.

Пересечение поверхностей вращения

Линия пересечения двух поверхностей вращения в общем случае представляет пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми и даже прямыми линиями.

Линию пересечения поверхностей обычно строят по ее отдельным точкам. Точки подразделяются на характерные (опорные) и промежуточные (случайные).

Общим способом построения этих точек является способ вспомогательных секущих поверхностей – посредников. При пересечении данных поверхностей вспомогательной поверхностью определяются линии пересечения ее с данными поверхностями, в пересечении этих линий получаются точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностей-посредников применяются плоскости или сферы.

Для определения линии пересечения часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Из общей схемы построения линии пересечения поверхностей выделяют два основных метода — метод секущих плоскостей и метод секущих сфер.

Способ вспомогательных секущих плоскостей

В качестве вспомогательных секущих плоскостей чаще всего используют плоскости, параллельные одной из плоскостей проекций.

Положение их выбирают таким, чтобы они пересекали заданные поверхности по простейшим линиям – прямым или окружностям.

Этот способ рекомендуется применять, если сечениями заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

  1. Если образующие (окружности) расположены в общих плоскостях уровня;
  2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;
  3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.

Пересечение цилиндрической и торовой поверхности

Если одна из поверхностей является цилиндрической проецирующей поверхностью, то построение линии пересечения упрощается, так как в этом случае одна проекция линии пересечения совпадает с окружностью – проекцией цилиндра на перпендикулярную плоскость проекций.

На рис. 9.4 построена линия перехода между цилиндром и тором. Так как поверхность цилиндра перпендикулярна плоскости Н, то горизонтальная проекция линии перехода известна. Она совпадает с горизонтальной проекцией цилиндра. Фронтальную и профильную проекции строим по принадлежности точек линии перехода не проецирующей поверхности тора.

Пересечение конуса и окружности

Рисунок 9.4 — Построение линии пересечения цилиндра с тором

Линия пересечения заданных поверхностей представляет собой пространственную кривую линию, имеющую фронтальную плоскость симметрии, образованную пересекающимися поверхностями цилиндра и тора.

Рассмотрим линию пересечения поверхности сферы с поверхностью конуса вращения (Рисунок 9.5).

Точки 1 и 7, расположенные на очерках фронтальных проекций конуса и сферы, очевидны и определяются без дополнительных построений.

Точка 4 на экваторе сферы построена с помощью горизонтальной плоскости, пересекающей конус по окружности. В пересечении горизонтальных проекций этой окружности и экватора находится горизонтальная проекция 4′ точки 4 и фронтальная 4» проекции точки 4 определим с помощью линии связи. Точка 4 на горизонтальной проекции разделяет кривую на видимую и невидимую части.

Точки 2, 3, 5 и 6, расположенные в промежутке между характерными точками 1,4 и 7 строим аналогично. С помощью линий связи определим фронтальные и горизонтальные проекции этих точек.

Пересечение конуса и окружности

Рисунок 9.5 — Построение линии пересечения конуса и сферы

Особые случаи пересечения

Пересечение соосных поверхностей вращения

Соосными называют поверхности вращения, оси которых совпадают. Линия пересечения таких поверхностей строится на основании теоремы о пересечении соосных поверхностей вращения: соосные поверхности вращения пересекаются между собой по окружностям.

Если ось вращения соосных поверхностей перпендикулярна к какой либо плоскости проекций, то линия их пересечения проецируется на эту плоскость в виде окружности, а на другую плоскость проекций – в прямую линию.

На рис. 9.6 даны примеры пересечения соосных поверхностей вращения (ось вращения параллельна горизонтальной плоскости). На рис. 9.6, а приведены сфера и конус, б – сфера и цилиндр, в – сфера и тор.

Пересечение конуса и окружности

Рисунок 9.6 — Пересечение соосных поверхностей вращения

Теорема Монжа для пересекающихся поверхностей вращения

Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания.

Для этого случая пересечения поверхностей вращения необходимо выполнение трех условий:

  • пересекающиеся поверхности должны быть поверхностями вращения;
  • оси поверхностей должны пересекаться;
  • плоскость, образованная осями поверхностей, должна быть параллельна одной из плоскостей проекций.

Пересечение конуса и окружности

Рисунок 9.7 — Пересечение поверхностей вращения по теореме Монжа

Это положение подтверждается теоремой Монжа: Если две поверхности второго порядка могут быть вписаны или описаны около третьей поверхности второго порядка, то пространственная кривая их пересечения четвертого порядка распадается на две плоские кривые второго порядка.

Способ вспомогательных секущих сфер

При построении линии пересечения поверхностей вращения не всегда удается подобрать секущие плоскости так, чтобы они пересекали поверхности по линиям, проекции которых были бы прямыми или окружностями. В некоторых таких случаях в качестве секущих поверхностей (посредников) целесообразно применять сферы. Этот способ основан на свойстве сферы пересекаться с любой поверхностью вращения, ось которой проходит через центр сферы по окружности.

Чтобы сфера одновременно пересекала две поверхности по окружностям, проецирующимся в прямые линии, необходимо выполнить условия:

  • Оси поверхностей вращения должны пересекаться (точку пересечения принимают за центр вспомогательных концентрических сфер).
  • Оси поверхностей вращения должны располагаться параллельно какой-либо плоскости проекций.

Пример. Построить проекции линии пересечения поверхностей конуса и цилиндра (рис. 9.8) [1].

Заданы прямой усеченный конус и наклонный цилиндр – тела вращения. Их оси параллельны фронтальной плоскости проекций и пересекаются в точке О(о′,о), т.е. соблюдены условия метода сфер.

Как и в предыдущих задачах, найдем проекции характерных точек. Точка 1 – самая высокая, точка 2 – самая низкая. Чтобы убедится в этом проведем через оси тел вспомогательную фронтальную плоскость Пересечение конуса и окружности. Эта плоскость рассекает рассматриваемые тела по крайним очерковым образующим, которые на фронтальную плоскость проекции проецируются без искажения и, пересекаясь между собой, образуют искомые точки 1′, 2′. С помощью вспомогательных сфер найдем другие точки линии пересечения заданных поверхностей. Для определения радиуса наименьшей сферы из центра О(о′) проведем две нормали, перпендикулярные очерковым образующим этих тел и большей нормалью выполним эту сферу. Эта сфера будет наименьшей Пересечение конуса и окружности, проведенной в большем теле, поэтому поверхности конуса она касается по окружности, которая проецируется на фронтальную плоскость проекций в виде отрезка m′′n′′, а поверхность наклонного цилиндра пересекает по окружности, фронтальная проекция которой также проецируется в прямую линию k′′l′′. В пересечении k′′l′′ и m′′n′′ получим точку 3′′ – самую глубокую точку пересечения. Для нахождения промежуточных точек проведем ряд концентрических сфер, радиусы которых должны находится в пределе Пересечение конуса и окружности, и аналогично точке 3′′ находим необходимые промежуточные точки.

Пересечение конуса и окружности

Рисунок 9.8 — Построение линии пересечения конуса и цилиндра

Учитывая, что сфера минимального радиуса всегда касается той поверхности, которая пронизывается другой, соединим найденные фронтальные проекции плавной кривой. Получим фронтальную проекцию линии пересечения. В нашем случае сфера радиусом Пересечение конуса и окружностикасается поверхности конуса, значит, поверхность цилиндра пронизывает поверхность конуса.

Построим горизонтальную проекцию линии пересечения. Т.к. точки 1′′, 2′′ лежат на очерковой образующей конуса, то горизонтальные проекции этих точек находятся на оси конуса, т.е. на горизонтальной проекции этой образующей. Для нахождения горизонтальных проекций точек 3′, 4′, 5′ воспользуемся горизонтальными плоскостями Пересечение конуса и окружности, проведенными через эти точки соответственно. Каждая плоскость рассекает поверхность конуса по окружности, которая на горизонтальной плоскости проекций не искажается. По линиям связи найдем горизонтальные проекции точек 3′, 4′, 5′.

Для правильного соединения точек определим их видимость. Границей видимости на плоскости Н является точка 4′′, лежащая на осевой фронтальной проекции цилиндра. Горизонтальные проекции ее Пересечение конуса и окружностинаходятся на очерковых образующих цилиндра. Соединив плавной кривой найденные точки, получим горизонтальную проекцию линии пересечения рассматриваемых тел.

Способ вспомогательных секущих плоскостей

Суть способа — вспомогательная секущая плоскость одновременно пересекает поверхности каждого тела и образует фигуры сечения, контуры которых пересекаются. Точки пересечения контуров соединяют.

Этот способ применим тогда, когда контуры отдельных сечений представляют прямые линии или окружности.

Пересечение конуса и окружности

Точки Пересечение конуса и окружностиявляются очевидными — это точки пересечения очерковых и оснований конусов. Найдём соответствующие вторые проекции этих точек.

Проведём горизонтальную плоскость Пересечение конуса и окружностикоторая рассечет оба конуса. В сечении конусов будут окружности Пересечение конуса и окружностипричем их фронтальными проекциями являются прямые. Построим горизонтальные проекции этих сечений — окружности радиусом Пересечение конуса и окружности

На пересечении этих окружностей сечений на Пересечение конуса и окружностиопределим горизонтальную проекцию общей точки — Пересечение конуса и окружностиФронтальную проекцию точек 2 и 2 определим по линиям связи на секущей плоскости Пересечение конуса и окружности

Проведём еще ряд горизонтальных секущих плоскостей и определим проекции других промежуточных точек линии пересечения, которые соединим лекальной кривой с учётом видимости.

Пересечение конуса и окружности

При взаимном пересечении конуса и цилиндра (рисунок 1) ось вращения цилиндра перпендикулярна Пересечение конуса и окружности. Значит, на Пересечение конуса и окружностилиния пересечения совпадет с контуром основания цилиндра, т.е. фронтальной проекцией линии пересечения будет являться фронтальная проекция цилиндра.

Построив горизонтальную проекцию линии пересечения, на Пересечение конуса и окружностина пересечении горизонтальной оси симметрии цилиндра с проекцией цилиндра наметим точки Пересечение конуса и окружностиПересечение конуса и окружности— точки границы видимости линии пересечения, лежащие на экваторе цилиндра.

На Пересечение конуса и окружноститочки линии пересечения, лежащие выше экватора будут видимы, а точки, лежащие ниже экватора — невидимы.

Способ вспомогательных сфер

Этот метод можно применять при соблюдении следующих условий :

  • пересекающиеся поверхности должны быть поверхностями вращения;
  • их оси должны пересекаться ; точка пересечения осей является центром вспомогательных сфер;
  • их оси должны быть // какой-либо плоскости проекций.

Сфера Пересечение конуса и окружностипроходит через самую дальнюю очевидную точку.

Сфера Пересечение конуса и окружности, должна касаться образующей большего тела, а меньшее тело -пересекать.

Сфера Пересечение конуса и окружности определяется как большее расстояние от центра сфер до образующих обоих тел — перпендикуляры из центра сфер к очерковым образующим. Больший перпендикуляр и будет являться радиусом минимальной сферы.

Сфера пересекает тела по окружностям, проецирующимся на одну из плоскостей проекций отрезком.

1. Определяем очевидные точки Пересечение конуса и окружности

2. Восстанавливаем перпендикуляры из центра сфер Пересечение конуса и окружностик очерковым образующим цилиндра и конуса. Перпендикуляр к цилиндру Пересечение конуса и окружностибольше, чем перпендикуляр к образующей конуса. Значит, Пересечение конуса и окружностии будет являться радиусом минимальной сферы. На Пересечение конуса и окружностипроводим из центра Пересечение конуса и окружностиэтим радиусом R окружность, которая рассечет и конус и цилиндр по окружностям, фронтальной проекцией которых будут прямые — сечение конусаПересечение конуса и окружностии сечение цилиндра Пересечение конуса и окружности

На пересечении этих сечений определяем фронтальную проекцию точки 3 — Пересечение конуса и окружности.

3. На Пересечение конуса и окружностистроим горизонтальную проекцию сечения конуса, на котором находится точка 3 -окружность радиусом Пересечение конуса и окружности/ 2, на которой по линии связи определяем точкиПересечение конуса и окружности

Пересечение конуса и окружности

1. Проводим ещё ряд секущих сфер радиусом больше минимальной и меньше максимальной и определяем другие промежуточные точки линии пересечения, которые соединяем лекальной кривой с учётом видимости.

Большее тело поглощает меньшее.

2. Видимость линии пересечения определяем следующим образом:

  • — на пересечении фронтальной проекции линии пересечения с осью симметрии цилиндра намечаем точку Пересечение конуса и окружностиопределяем на Пересечение конуса и окружностина очерковых образующих цилиндра);
  • — часть линии, находящаяся выше точки К — видимая. Точка К — граница видимости.

Элементы технического рисования

Технический рисунок — это наглядное изображение, выполненное по правилам аксонометрических проекций от руки, на глаз, соблюдая пропорции. Им пользуются на производстве для иллюстрации чертежей.

Обычно технический рисунок выполняется в изометрии.

Выполнение рисунка модели или детали начинается с проведения аксонометрических осей. Затем рисуется основание и строятся габаритные очертания -прямоугольные параллелепипеды. Деталь мысленно расчленяют на отдельные геометрические элементы, постепенно вырисовывая все элементы.

Пересечение конуса и окружности
Технические рисунки получаются более наглядными, если их покрыть штрихами. При нанесении штрихов считают, что лучи света падают на предмет справа и сверху или слева и сверху.

Пересечение конуса и окружности

Взаимное пересечение поверхностей с примерами

Алгоритм решения задач по определению линии пересечения поверхностей Ф’ и Ф» (рис. 9.1) в целом аналогичен решению второй позиционной задачи и состоит в следующем:

  1. Обе заданные поверхности Ф’ и Ф» рассекают третьей, вспомогательной плоскостью или поверхностью P.
  2. Определяют линии пересечения каждой заданной поверхности со вспомогательной: Ф’ × P =l’, Ф» × P =l».
  3. Определяют точки пересечения полученных линий l’×l» = A и A’. Точки A и a´ принадлежат обеим поверхностям.
  4. Проведя несколько вспомогательных поверхностей, находят достаточное количество точек и соединяют их плавной лекальной кривой, которая и является искомой линией пересечения поверхностей.
  5. Определяют видимость поверхностей и линии их пересечения.

Пересечение конуса и окружности

Рис. 9.1. Пересечение поверхностей

В качестве вспомогательных поверхностей P следует выбирать поверхности — плоскости или сферы, которые пересекают обе заданные поверхности по наиболее простым для построения линиям — прямым или окружностям. Кроме того, если в сечении поверхности получаются окружности, они должны проецироваться на одну из плоскостей проекций без искажения.

Определение точек линии пересечения поверхностей начинают с построения так называемых опорных точек. К ним относятся:

  • точки пересечения очерковых образующих, если образующие лежат в одной плоскости,
  • точки, лежащие на очерковых образующих поверхностей,
  • точки, лежащие в общей плоскости симметрии,
  • экстремальные (верхние — нижние, правые — левые) по отношению к плоскостям проекций, к центру концентрических сфер.

При соединении точек следует иметь ввиду, что проекции линии пересечения не могут выходить за пределы общей площади — площади наложения — проекций пересекающихся поверхностей. Видимыми будут те участки линии пересечения, которые принадлежат видимым частям обеих поверхностей.

Способ вспомогательных параллельных плоскостей

Этот способ заключается в том, что обе поверхности рассекаются параллельными плоскостями уровня. Этот способ применяют лишь в тех случаях, когда вспомогательные плоскости рассекают поверхности по простым линиям — прямым или окружностям, которые проецируются на соответствующую плоскость проекций без искажения.

Рассмотрим построение линии пересечения прямого кругового конуса и сферы (рис. 9.2).
Пересечение конуса и окружности

Рис. 9.2. Линия пересечения поверхностей прямого кругового конуса и сферы

Фронтальные плоскости уровня пересекают поверхность конуса по гиперболам, следовательно, для решения данной задачи нужно применить горизонтальные плоскости уровня, которые рассекают обе данные поверхности по окружностям.

Решение задачи начинают с построения опорных точек. Конус и сфера имеют общую плоскость симметрии γ(γ1), параллельную плоскости П2. Поэтому высшая точка A и низшая точка F линии пересечения получаются как результат пересечения очерковых образующих конуса и сферы (рис. 9.3).

Остальные точки определяются с помощью горизонтальных плоскостей уровня. Более подробно разберем построение точек E и E'(рис. 9.4).

1. Пересечь обе поверхности вспомогательной горизонтальной плоскостью уровня α(а2). Плоскость а(а2) пересекает сферу по окружности m(m1,m2), а конус — по окружности q(q1,q2):
m(m1 ,m 2)=Ф сф Пересечение конуса и окружностиа (а2);
q(q1 ,q2) =Ф к Пересечение конуса и окружностиа (u2).

2. Построив горизонтальные проекции окружностей m и q, определить точки их пересечения E и E’:
E1= m1 × q1; E2=E1E2Пересечение конуса и окружностиα2.
E’1=m1 × q1; E’2=ElE2Пересечение конуса и окружностиα2.

Пересечение конуса и окружности

Рис. 9.3. Определение опорных точек линии пересечения поверхностей

3. Аналогичным образом определяются остальные точки, формирующие линию пересечения (рис. 9.5,а). Они получены с помощью горизонтальных плоскостей уровня β(β2), δ(δ2) и μ(μ2). Пределы этих плоскостей по высоте определяют высшая и низшая опорные точки линии пересечения поверхностей. Плоскость μ(μ2)рассекает поверхность сферы по очерковой образующей b (b2, b2),поэтому полученные точки В и В’ являются опорными, ограничивающими линию пересечения поверхностей по ширине.

4. Последовательно соединить одноименные проекции полученных точек плавной лекальной кривой. Полученная линия не должна выходить за пределы области перекрытия проекций данных поверхностей.

5. Определить видимость линии пересечения поверхностей и их очерковых образующих.

Поверхность конуса на горизонтальной плоскости проекций полностью видима, следовательно, видимость линии пересечения определяется по поверхности сферы. Видима будет та часть сферы, которая на П2 лежит выше очерковой образующей b2.Точки В и В’ на очерковой образующей сферы являются точками смены видимости линии пересечения на плоскости проекций П1.
Искомая линия пересечения поверхностей конуса и сферы d(d1,d2) (кривая второго порядка), полученная способом вспомогательных секущих плоскостей, приведена на рис 9.5,б.

Пересечение конуса и окружности

Рис. 9.4. Определение промежуточных точек линии пересечения поверхностей:
а — наглядное изображение;
б — комплексный чертеж
Пересечение конуса и окружности

Рис. 9.5. Определение линии пересечения поверхностей способом вспомогательных параллельных плоскостей:
а — определение промежуточных точек;
б — искомая линия пересечения

Способ вспомогательных сфер

При построении линии пересечения двух поверхностей способом вспомогательных сфер возможны два случая. В одном из них используются сферы, проведенные из одного, общего центра (концентрические), а в другом -сферы, проведенные из разных центров (эксцентрические).

Способ концентрических сфер

Этот способ применяется для построения линии пересечения поверхностей вращения произвольного вида, при условии, что оси этих поверхностей пересекаются.

В основу способа концентрических сфер положено свойство сферы с центром на оси какой-либо поверхности.

Если центр сферы находится на оси любой поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получатся окружности (рис. 9.6).

Пересечение конуса и окружности

Рис. 9.6. Соосные поверхности вращения:
a- наглядное изображение;
б — на комплексном чертеже

Рассмотрим способ концентрических сфер на примере построения линии пересечения цилиндра и конуса вращения, оси которых i(i1,i2) и q(q1,q2) пересекаются и точка пересечения осей обозначена через O (O1 ,O2)(рис. 9.7).

Пересечение конуса и окружности

Рис. 9.7. Линия пересечения поверхностей цилиндра и прямого кругового конуса

Точка пересечения осей поверхностей принимается за центр вспомогательных концентрических сфер.

Алгоритм решения задачи об определении линии пересечения поверхностей состоит в следующем:

1. Определить опорные точки (рис. 9.8). Так как обе данные поверхности имеют общую плоскость симметрии δ(δ1), параллельную плоскости проекций П2, то их очерковые образующие, по отношению к плоскости П2,пересекаются. Точки A(A1,A2), B(B1,B2), C(C1,C2) и D(D1,D2) пересечения этих образующих являются точками видимости линии пересечения поверхностей.

2. Определить радиусы максимальной и минимальной сфер, необходимых для определения точек линии пересечения.

Радиус максимальной сферы Rmax равен расстоянию от центра вспомогательных сфер до наиболее удаленной точки пересечения очерковых образующих, в данном случае Rmax=O2A2 (рис. 9.9).

Чтобы определить радиус минимальной сферы Rmin, необходимо провести через точку O2 нормали к очерковым образующим данных поверхностей. Тогда больший из отрезков этих нормалей и будет Rmin. В этом случае сфера минимального радиуса будет касаться одной из данных поверхностей, а со второй — пересекаться.

В данном случае сферой минимального радиуса является сфера, касающаяся цилиндрической поверхности (см. рис. 9.9).

Сфера радиусом Rmin касается цилиндрической поверхности по окружности m, которая на фронтальной проекции изображается в виде прямой m2, перпендикулярной q2(m2Пересечение конуса и окружностиq2). Эта же сфера пересекает коническую поверхность по двум окружностям. Но, в данном случае, нам интересна только окружность n, так как только она дает решение. Эта окружность n изображается на фронтальной проекции в виде прямой n2, перпендикулярной i2(n2Пересечение конуса и окружностиi2). Точки E и Fпересечения этих окружностей будут принадлежать обеим поверхностям:

Чтобы построить горизонтальные проекции точек Е и F следует воспользоваться окружностью n, содержащей данные точки, так как она не искажается на плоскости проекций П1:

Пересечение конуса и окружности

Рис. 108. Определение опорных точек линии пересечения поверхностей

Пересечение конуса и окружности

Рис. 9.9. Определение радиусов максимальной и минимальной сфер.

Для построения промежуточных точек линии пересечения проводят несколько концентрических сфер с центром в точке O, причем радиус R этих сфер должен изменяться в пределах Rmin

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Поделиться или сохранить к себе: