Отношение стороны квадрата к радиусу окружности

Содержание
  1. Квадрат. Онлайн калькулятор
  2. Свойства квадрата
  3. Диагональ квадрата
  4. Окружность, вписанная в квадрат
  5. Формула вычисления радиуса вписанной окружности через сторону квадрата
  6. Формула вычисления сторон квадрата через радиус вписанной окружности
  7. Окружность, описанная около квадрата
  8. Формула радиуса окружности описанной вокруг квадрата
  9. Формула стороны квадрата через радиус описанной около квадрата окружности
  10. Периметр квадрата
  11. Признаки квадрата
  12. Радиусы описанной и вписанной окружностей в квадрат
  13. Окружность вписанная в квадрат
  14. Окружность описанная около квадрата
  15. Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.
  16. Нахождение радиуса описанной вокруг квадрата окружности
  17. Формулы вычисления радиуса описанной окружности
  18. Через сторону квадрата
  19. Через диагональ квадрата
  20. Примеры задач
  21. 🔍 Видео

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Отношение стороны квадрата к радиусу окружности

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностей

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Отношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружности

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Отношение стороны квадрата к радиусу окружности

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Отношение стороны квадрата к радиусу окружности
Отношение стороны квадрата к радиусу окружности.(1)

Из равенства (1) найдем d:

Отношение стороны квадрата к радиусу окружности.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Отношение стороны квадрата к радиусу окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Отношение стороны квадрата к радиусу окружности(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Отношение стороны квадрата к радиусу окружности(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Отношение стороны квадрата к радиусу окружности

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Отношение стороны квадрата к радиусу окружности
Отношение стороны квадрата к радиусу окружности(5)

Из формулы (5) найдем R:

Отношение стороны квадрата к радиусу окружности
Отношение стороны квадрата к радиусу окружности(6)

или, умножая числитель и знаменатель на Отношение стороны квадрата к радиусу окружности, получим:

Отношение стороны квадрата к радиусу окружности.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать

Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Отношение стороны квадрата к радиусу окружности
Отношение стороны квадрата к радиусу окружности.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Отношение стороны квадрата к радиусу окружностиНайти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Отношение стороны квадрата к радиусу окружностив (8), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Отношение стороны квадрата к радиусу окружности(9)

где Отношение стороны квадрата к радиусу окружности− сторона квадрата.

Пример 6. Сторона квадрата равен Отношение стороны квадрата к радиусу окружности. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Отношение стороны квадрата к радиусу окружностив (9), получим:

Отношение стороны квадрата к радиусу окружности

Ответ: Отношение стороны квадрата к радиусу окружности

Видео:Площадь круга. Математика 6 класс.Скачать

Площадь круга. Математика 6 класс.

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Отношение стороны квадрата к радиусу окружности

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Отношение стороны квадрата к радиусу окружности

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Отношение стороны квадрата к радиусу окружности(10)

Так как AD и BC перпендикулярны, то

Отношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружности(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Отношение стороны квадрата к радиусу окружности(12)

Эти реугольники также равнобедренные. Тогда

Отношение стороны квадрата к радиусу окружностиОтношение стороны квадрата к радиусу окружности(13)

Из (13) следует, что

Отношение стороны квадрата к радиусу окружности(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Отношение стороны квадрата к радиусу окружности

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Радиусы описанной и вписанной окружностей в квадрат

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. Отношение стороны квадрата к радиусу окружностиУ квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Отношение стороны квадрата к радиусу окружности

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Видео:Квадрат в окружности или окружность в квадрате #ShortsСкачать

Квадрат в окружности или окружность в квадрате #Shorts

Окружность описанная около квадрата

Отношение стороны квадрата к радиусу окружностиВокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Отношение стороны квадрата к радиусу окружности

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
Отношение стороны квадрата к радиусу окружности, отсюда Отношение стороны квадрата к радиусу окружности
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Отношение стороны квадрата к радиусу окружности
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:
Отношение стороны квадрата к радиусу окружности

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=Отношение стороны квадрата к радиусу окружности;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.
Отношение стороны квадрата к радиусу окружности

Видео:ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематикаСкачать

ОГЭ Площадь квадрата, описанного около окружности #огэ #огэ2023 #алгебра #огэматематика

Нахождение радиуса описанной вокруг квадрата окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около квадрата. Также разберем примеры решения задач для закрепления изложенного материала.

Видео:Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать

Задание 16 ОГЭ по математике. Окружность описана около квадрата

Формулы вычисления радиуса описанной окружности

Отношение стороны квадрата к радиусу окружности

Через сторону квадрата

Радиус R окружности, описанной около квадрата, равняется длине его стороны a, умноженной на квадратный корень из двух и деленной на два.

Отношение стороны квадрата к радиусу окружности

Через диагональ квадрата

Радиус R описанной вокруг квадрата окружности равен половине его диагонали d.

Отношение стороны квадрата к радиусу окружности

Видео:ПОДРОБНОЕ РЕШЕНИЕ ВОСЕМНАДЦАТОГО ЗАДАНИЯ ОГЭ МАТЕМАТИКА 2018Скачать

ПОДРОБНОЕ РЕШЕНИЕ ВОСЕМНАДЦАТОГО ЗАДАНИЯ ОГЭ МАТЕМАТИКА 2018

Примеры задач

Задание 1

Длина стороны квадрата равняется 8 см. Найдите радиус описанной вокруг него окружности.

Применим первую формулу, рассмотренную выше:

Отношение стороны квадрата к радиусу окружности

Задание 2

Вычислите длину диагонали квадрата, если радиус описанной вокруг него окружности составляет 6 см.

Как мы знаем, радиус описанной окружности равняется половине диагонали квадрата. Следовательно, общая длина диагонали равняется 12 см (6 см ⋅ 2).

🔍 Видео

ЕГЭ по математике. Задание №16 #11Скачать

ЕГЭ по математике. Задание №16 #11

Задача 6 №27892 ЕГЭ по математике. Урок 126Скачать

Задача 6 №27892 ЕГЭ по математике. Урок 126
Поделиться или сохранить к себе: