Отношение диагоналей в треугольнике

Треугольник. Формулы и свойства треугольников.
Содержание
  1. Типы треугольников
  2. По величине углов
  3. По числу равных сторон
  4. Вершины углы и стороны треугольника
  5. Свойства углов и сторон треугольника
  6. Теорема синусов
  7. Теорема косинусов
  8. Теорема о проекциях
  9. Формулы для вычисления длин сторон треугольника
  10. Медианы треугольника
  11. Свойства медиан треугольника:
  12. Формулы медиан треугольника
  13. Биссектрисы треугольника
  14. Свойства биссектрис треугольника:
  15. Формулы биссектрис треугольника
  16. Высоты треугольника
  17. Свойства высот треугольника
  18. Формулы высот треугольника
  19. Окружность вписанная в треугольник
  20. Свойства окружности вписанной в треугольник
  21. Формулы радиуса окружности вписанной в треугольник
  22. Окружность описанная вокруг треугольника
  23. Свойства окружности описанной вокруг треугольника
  24. Формулы радиуса окружности описанной вокруг треугольника
  25. Связь между вписанной и описанной окружностями треугольника
  26. Средняя линия треугольника
  27. Свойства средней линии треугольника
  28. Периметр треугольника
  29. Формулы площади треугольника
  30. Формула Герона
  31. Равенство треугольников
  32. Признаки равенства треугольников
  33. Первый признак равенства треугольников — по двум сторонам и углу между ними
  34. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  35. Третий признак равенства треугольников — по трем сторонам
  36. Подобие треугольников
  37. Признаки подобия треугольников
  38. Первый признак подобия треугольников
  39. Второй признак подобия треугольников
  40. Третий признак подобия треугольников
  41. Диагональ треугольника – формула
  42. Треугольник
  43. Прямоугольник
  44. Многоугольник
  45. Что мы узнали?
  46. Диагональ треугольника
  47. Треугольник
  48. Прямоугольник
  49. Многоугольник
  50. Что мы узнали?

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Типы треугольников

По величине углов

Отношение диагоналей в треугольнике

Отношение диагоналей в треугольнике

Отношение диагоналей в треугольнике

По числу равных сторон

Отношение диагоналей в треугольнике

Отношение диагоналей в треугольнике

Отношение диагоналей в треугольнике

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Отношение диагоналей в треугольнике

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Диагонали трапеции и точка их пересеченияСкачать

Диагонали трапеции и точка их пересечения

Медианы треугольника

Отношение диагоналей в треугольнике

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Трапеция. Отношение площадей треугольников. Свойства диагоналей трапецииСкачать

Трапеция. Отношение площадей треугольников. Свойства диагоналей трапеции

Биссектрисы треугольника

Отношение диагоналей в треугольнике

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Высоты треугольника

Отношение диагоналей в треугольнике

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Свойства диагоналей параллелограмма | Геометрия 8-9 классыСкачать

Свойства диагоналей параллелограмма | Геометрия 8-9 классы

Окружность вписанная в треугольник

Отношение диагоналей в треугольнике

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Замечательное свойство трапеции | ЕГЭ по математике 2020Скачать

Замечательное свойство трапеции | ЕГЭ по математике 2020

Окружность описанная вокруг треугольника

Отношение диагоналей в треугольнике

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Связь между вписанной и описанной окружностями треугольника

Видео:Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | ИнфоурокСкачать

Свойства диагоналей прямоугольника. Свойства диагоналей квадрата | Математика 4 класс #9 | Инфоурок

Средняя линия треугольника

Свойства средней линии треугольника

Отношение диагоналей в треугольнике

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Периметр треугольника

Отношение диагоналей в треугольнике

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Формулы площади треугольника

Отношение диагоналей в треугольнике

Формула Герона

S =a · b · с
4R

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Подобие треугольников

Отношение диагоналей в треугольнике

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Площадь ромба. Легче понять...Скачать

Площадь ромба. Легче понять...

Диагональ треугольника – формула

Очень часто в начале изучения фигуры ученики путают значение диагонали прямоугольника и треугольника. Поэтому, чтобы не путаться в обозначениях, лучше разобраться в тематике раз и навсегда.

Отношение диагоналей в треугольнике

Видео:Соотношения между сторонами и углами треугольника. 7 класс.Скачать

Соотношения между сторонами и углами треугольника. 7 класс.

Треугольник

Треугольник – это фигура, состоящая из трех сторон и трех углов. Треугольник имеет три характеризующих отрезка:

Треугольник не может иметь диагональ в принципе. Дело в том, что диагонали могут быть проведены только в многоугольниках, количество сторон которых больше 3.

Почему так? Потому что диагональ это отрезок, соединяющий противоположные вершины. В треугольнике противоположных вершин нет и быть не может. Существует сторона, противоположная вершине, но сами по себе вершины всегда смежные, т.е. соединенные одной стороной. Значит, диагонали треугольника не существует

Отношение диагоналей в треугольнике

Рис. 1. Три медианы в треугольнике.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Прямоугольник

Прямоугольник – это первая фигура школьного курса математики, которая имеет диагональ. Так же, как диагональ имеет и квадрат.

Диагональ прямоугольника или квадрата всегда:

  • Делит фигуру на две равных прямоугольных треугольника.
  • В полученных треугольниках диагональ будет являться гипотенузой
  • Диагональ будет равняться корню квадратному из суммы квадратов катетов согласно теореме Пифагора

Диагоналей в любом четырехугольнике 2, а в квадрате и прямоугольнике обе диагонали равны между собой.

При этом правило не касается других четырехугольников. Например, диагонали параллелограмма всегда неравны между собой. Запомните, если перед вами произвольный четырехугольник использовать утверждение о равенстве диагоналей без доказательства нельзя. Любое утверждение в геометрии, кроме аксиом должно быть доказано.

Кроме прямоугольника и квадрата равными диагоналями обладает ромб. При этом диагонали ромба перпендикулярны друг другу и, так же, как и диагонали квадрата и прямоугольника, точкой пересечения делятся пополам.

Видео:Найдите отношение отрезков диагоналиСкачать

Найдите отношение отрезков диагонали

Многоугольник

На самом деле, многоугольником может называться любая фигура с количеством углов, больше 2. По факту, любая фигура может называться многоугольником, поскольку 2 угла у замкнутой фигуры быть не может.

Рассмотрим многоугольники с количеством углов больше 4, поскольку четырехугольники мы уже рассмотрели.

Отношение диагоналей в треугольнике

Рис. 2. Диагонали многоугольника.

В многоугольнике, если он не является правильным, не получится решить задачу нахождения диагонали без дополнительных построений. В правильном многоугольнике все диагонали равны между собой и точкой пересечения делятся пополам.

Правильным многоугольником зовется фигура, все стороны и углы которой соответственно равны между собой.

Количество диагоналей можно посчитать, прикинув количество смежных и несмежных вершин. Смежными зовутся вершины, соединенные одним отрезком.

Например, в четырехугольнике у любой вершины есть две смежные вершины. Значит, для каждой вершины есть только одна диагональ. Диагональ соединяет две противоположные вершины, всего вершин 4, значит 4:2=2 – в любом четырехугольнике 2 диагонали.

Но этот способ не подойдет, если в задаче требуется подсчитать количество диагоналей у многоугольника с 5989 сторонами. Такая фигура вполне возможна в теории. На практике начертить ее весьма утомительно, как и подсчитать диагонали на чертеже. Поэтому была выведена формула числа диагоналей многоугольника:

$P=<n(n-3)over>$ – где n это число сторон многоугольника.

Проверим для квадрата:

Отношение диагоналей в треугольнике

Рис. 3. Диагонали квадрата.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Что мы узнали?

Мы узнали, почему не существует формулы диагонали треугольника. Поговорили о том, что диагонали в принципе нет, и не может быть в многоугольниках с количеством сторон, меньше 3. Обсудили различные свойства диагоналей в различных фигурах.

Видео:Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Диагональ треугольника

Отношение диагоналей в треугольнике Отношение диагоналей в треугольнике

Средняя оценка: 4.7

Всего получено оценок: 287.

Средняя оценка: 4.7

Всего получено оценок: 287.

Очень часто в начале изучения фигуры ученики путают значение диагонали прямоугольника и треугольника. Поэтому, чтобы не путаться в обозначениях, лучше разобраться в тематике раз и навсегда.

Видео:14. Свойства диагоналей прямоугольника и квадрата.Скачать

14. Свойства диагоналей прямоугольника и квадрата.

Треугольник

Треугольник – это фигура, состоящая из трех сторон и трех углов. Треугольник имеет три характеризующих отрезка:

Треугольник не может иметь диагональ в принципе. Дело в том, что диагонали могут быть проведены только в многоугольниках, количество сторон которых больше 3.

Почему так? Потому что диагональ это отрезок, соединяющий противоположные вершины. В треугольнике противоположных вершин нет и быть не может. Существует сторона, противоположная вершине, но сами по себе вершины всегда смежные, т.е. соединенные одной стороной. Значит, диагонали треугольника не существует

Прямоугольник

Прямоугольник – это первая фигура школьного курса математики, которая имеет диагональ. Так же, как диагональ имеет и квадрат.

Диагональ прямоугольника или квадрата всегда:

  • Делит фигуру на две равных прямоугольных треугольника.
  • В полученных треугольниках диагональ будет являться гипотенузой
  • Диагональ будет равняться корню квадратному из суммы квадратов катетов согласно теореме Пифагора

Диагоналей в любом четырехугольнике 2, а в квадрате и прямоугольнике обе диагонали равны между собой.

При этом правило не касается других четырехугольников. Например, диагонали параллелограмма всегда неравны между собой. Запомните, если перед вами произвольный четырехугольник использовать утверждение о равенстве диагоналей без доказательства нельзя. Любое утверждение в геометрии, кроме аксиом должно быть доказано.

Кроме прямоугольника и квадрата равными диагоналями обладает ромб. При этом диагонали ромба перпендикулярны друг другу и, так же, как и диагонали квадрата и прямоугольника, точкой пересечения делятся пополам.

Многоугольник

На самом деле, многоугольником может называться любая фигура с количеством углов, больше 2. По факту, любая фигура может называться многоугольником, поскольку 2 угла у замкнутой фигуры быть не может.

Рассмотрим многоугольники с количеством углов больше 4, поскольку четырехугольники мы уже рассмотрели.

Отношение диагоналей в треугольникеРис. 2. Диагонали многоугольника.

В многоугольнике, если он не является правильным, не получится решить задачу нахождения диагонали без дополнительных построений. В правильном многоугольнике все диагонали равны между собой и точкой пересечения делятся пополам.

Правильным многоугольником зовется фигура, все стороны и углы которой соответственно равны между собой.

Количество диагоналей можно посчитать, прикинув количество смежных и несмежных вершин. Смежными зовутся вершины, соединенные одним отрезком.

Например, в четырехугольнике у любой вершины есть две смежные вершины. Значит, для каждой вершины есть только одна диагональ. Диагональ соединяет две противоположные вершины, всего вершин 4, значит 4:2=2 – в любом четырехугольнике 2 диагонали.

Но этот способ не подойдет, если в задаче требуется подсчитать количество диагоналей у многоугольника с 5989 сторонами. Такая фигура вполне возможна в теории. На практике начертить ее весьма утомительно, как и подсчитать диагонали на чертеже. Поэтому была выведена формула числа диагоналей многоугольника:

$P=<n(n-3)over>$ – где n это число сторон многоугольника.

Проверим для квадрата:

Отношение диагоналей в треугольникеРис. 3. Диагонали квадрата.

Отношение диагоналей в треугольнике

Что мы узнали?

Мы узнали, почему не существует формулы диагонали треугольника. Поговорили о том, что диагонали в принципе нет, и не может быть в многоугольниках с количеством сторон, меньше 3. Обсудили различные свойства диагоналей в различных фигурах.

Поделиться или сохранить к себе: