Остроугольный треугольник центральная симметрия

Осевая и центральная симметрия

Остроугольный треугольник центральная симметрия

О чем эта статья:

Содержание
  1. Что такое симметрия
  2. Осевая симметрия
  3. Центральная симметрия
  4. Задачи на самопроверку
  5. Остроугольный треугольник — виды, свойства и признаки
  6. Виды, признаки и свойства остроугольных треугольников
  7. Равносторонний треугольник
  8. Разносторонний треугольник
  9. Равнобедренный остроугольный треугольник
  10. Равнобедренный тупоугольный треугольник
  11. Практическая работа на тему «Осевая и центральная симметрия» (6 класс)
  12. Дистанционное обучение как современный формат преподавания
  13. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  14. Математика: теория и методика преподавания в образовательной организации
  15. Дистанционные курсы для педагогов
  16. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  17. Материал подходит для УМК
  18. Другие материалы
  19. Вам будут интересны эти курсы:
  20. Оставьте свой комментарий
  21. Автор материала
  22. Дистанционные курсы для педагогов
  23. Подарочные сертификаты
  24. 📽️ Видео

Видео:Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Остроугольный треугольник центральная симметрия

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Остроугольный треугольник центральная симметрия

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Осевая и центральная симметрия, 6 классСкачать

Осевая и центральная симметрия, 6 класс

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Остроугольный треугольник центральная симметрия

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Остроугольный треугольник центральная симметрия

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Остроугольный треугольник центральная симметрия

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Остроугольный треугольник центральная симметрия

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Остроугольный треугольник центральная симметрия

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Остроугольный треугольник центральная симметрия

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Остроугольный треугольник центральная симметрия

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Остроугольный треугольник центральная симметрия

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Остроугольный треугольник центральная симметрия

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Остроугольный треугольник — виды, свойства и признаки

Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.

Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.

Видео:Центральная симметрияСкачать

Центральная симметрия

Виды, признаки и свойства остроугольных треугольников

Трехсторонние фигуры разделяются на множество подвидов и категорий.

Общая классификация по наибольшему углу делит их на 3 группы:

Остроугольный треугольник центральная симметрия

Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.

3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;

сумма длин любых двух сторон больше оставшейся третьей.

Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:

1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.

Остроугольный треугольник центральная симметрия

2. Высоты пересекаются в одной точке, образуя ортоцентр.

Остроугольный треугольник центральная симметрия

3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).

Остроугольный треугольник центральная симметрия

Уникальные особенности зависят от разновидностей фигуры.

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Равносторонний треугольник

Остроугольный треугольник центральная симметрия

«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.

Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.

Остроугольный треугольник центральная симметрия

Видео:Осевая и центральная симметрия.Скачать

Осевая и центральная симметрия.

Разносторонний треугольник

Остроугольный треугольник центральная симметрия

Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.

Уникальных отличий не имеет, только общие:

все параметры имеют разные значения;

совпадений между вспомогательными линиями нет.

Видео:Геометрия 8 Осевая и центральная симметрияСкачать

Геометрия 8 Осевая и центральная симметрия

Равнобедренный остроугольный треугольник

Остроугольный треугольник центральная симметрия

Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.

проведенная к основанию линия – и биссектриса, и высота, и медиана;

вспомогательные линии из крайних точек при основании совпадают.

Видео:СИММЕТРИЯ | осевая симметрия | центральная симметрияСкачать

СИММЕТРИЯ | осевая симметрия | центральная симметрия

Равнобедренный тупоугольный треугольник

Остроугольный треугольник центральная симметрия

Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.

Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.

Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.

В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.

Видео:Центральная и осевая симметрии. Геометрия 7 класс.Скачать

Центральная и осевая симметрии.  Геометрия 7 класс.

Практическая работа на тему «Осевая и центральная симметрия» (6 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

Домашнее задание на тему “Осевая и центральная симметрия”

Построить треугольники , симметричные данным, относительно заданной оси симметрии:

1. Остроугольный треугольник, ось симметрии проходит параллельно одной из сторон

треугольника, общих точек с фигурой не имеет.

2. Прямоугольный треугольник, ось симметрии не параллельна ни одной из сторон

треугольника, общих точек с фигурой не имеет.

3. Тупоугольный треугольник, ось симметрии совпадает с наименьшей стороной

4. Тупоугольный треугольник, ось симметрии проходит через одну из вершин

треугольника, т.е. имеет одну общую точку с фигурой.

5. Прямоугольный треугольник, ось симметрии произвольно пересекает любые две

6. Центральная симметрия : произвольный треугольник, произвольный центр симметрии,

находящийся за пределами треугольника.

7. Центральная симметрия : произвольный треугольник, произвольный центр симметрии,

находящийся внутри треугольника.

Работу выполнить на чистом листе А4.

Остроугольный треугольник центральная симметрия

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 987 человек из 79 регионов

Остроугольный треугольник центральная симметрия

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 310 человек из 69 регионов

Остроугольный треугольник центральная симметрия

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 677 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Симметрия относительно точки (центральная симметрия). Пример 2Скачать

Симметрия относительно точки (центральная симметрия). Пример 2

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 535 501 материал в базе

Материал подходит для УМК

Остроугольный треугольник центральная симметрия

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.

§ 44. Осевая и центральная симметрии

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 30.10.2021
  • 58
  • 0

Остроугольный треугольник центральная симметрия

  • 30.10.2021
  • 76
  • 2
  • 29.10.2021
  • 60
  • 0

Остроугольный треугольник центральная симметрия

  • 29.10.2021
  • 91
  • 0

Остроугольный треугольник центральная симметрия

  • 29.10.2021
  • 72
  • 1
  • 29.10.2021
  • 33
  • 0
  • 29.10.2021
  • 40
  • 0
  • 29.10.2021
  • 30
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 30.10.2021 383
  • DOCX 11.5 кбайт
  • 8 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Коновалова Светлана Евгеньевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Остроугольный треугольник центральная симметрия

  • На сайте: 4 года и 9 месяцев
  • Подписчики: 0
  • Всего просмотров: 8211
  • Всего материалов: 8

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.Скачать

ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Остроугольный треугольник центральная симметрия

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Остроугольный треугольник центральная симметрия

Минобрнауки подготовит государственный рейтинг университетов

Время чтения: 1 минута

Остроугольный треугольник центральная симметрия

В Тульской области ввели школьные каникулы со 2 по 11 февраля

Время чтения: 1 минута

Остроугольный треугольник центральная симметрия

В Свердловской области школьников со 2 по 8 класс и студентов переводят на удаленку

Время чтения: 1 минута

Остроугольный треугольник центральная симметрия

Новые курсы: школьные службы примирения, детская журналистика и другие

Время чтения: 15 минут

Остроугольный треугольник центральная симметрия

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Остроугольный треугольник центральная симметрия

В Самаре и Тольятти часть школьников перевели на дистанционное обучение

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

📽️ Видео

6 класс, 26 урок, СимметрияСкачать

6 класс, 26 урок, Симметрия

11 класс, 9 урок, Центральная симметрияСкачать

11 класс, 9 урок, Центральная симметрия

Осевая симметрия. Центральная симметрия. Практическая часть. 6 класс.Скачать

Осевая симметрия. Центральная симметрия. Практическая часть. 6 класс.

48. Осевая и центральная симметрииСкачать

48. Осевая и центральная симметрии

Ось симметрииСкачать

Ось симметрии

Осевая и центральная симметрия. Урок 5. Геометрия 8 классСкачать

Осевая и центральная симметрия. Урок 5. Геометрия 8 класс

Центральная симметрия. Как построить фигуру, симметричную данной относительно точкиСкачать

Центральная симметрия. Как построить фигуру, симметричную данной относительно точки
Поделиться или сохранить к себе: