Осевое сечение сферы есть окружность

ЭСО «ТЕЛА ВРАЩЕНИЯ»

Осевое сечение сферы есть окружность

Видео:Сфера и шар. Сечение сферы. Вписанная и описанная сфераСкачать

Сфера и шар. Сечение сферы. Вписанная и описанная сфера

Сечение сферы (шара) плоскостью

О сечении сферы плоскостью

Осевое сечение сферы есть окружность

Сечение сферы плоскостью есть окружность.

Пусть плоскость α пересекает сферу W(O,R). Из центра O опустим перпендикуляр OC на плоскость α.

Соединим произвольную точку M линии пересения плоскости α со сферой W(O,R) с точками O и C. Т.к. OC ⊥ α, то OC ⊥ CM.

В прямоугольном треугольнике ∆OCM CM 2 = OM 2 — OC 2 . Т.к. OM и OC — величины постоянные, то и CM — величина постоянная. Таким образом все точки линии пересечения плоскости α и сферы W(O,R) равноудалены от точки C, поэтому эта линия пересечения является окружностью с центром в точке C и радиусом r = CM.

Сечение шара плоскостью есть круг, а основание перпендикуляра проведенного из центра шара к пересекаемой плоскости есть центр круга, полученного в сечении.

Плоскость, проходящая через центр сферы (шара) называется диаметральной плоскостью.

Сечение сферы (шара) диаметральной плоскостью называется большой окружностью (большим кругом).

Статистика посещений | Номер ресурса в БелГИЭ: 137297 | Номер свидетельства в НИРУП «ИППС»: 4141816821

Видео:Сечение сферыСкачать

Сечение сферы

Геометрия 11 класс. Зачет по теме: Объем шара и его частей. Площадь сферы.

Осевое сечение сферы есть окружность

Урок-зачет позволяет повторить, обобщить и систематизировать знания учащихся, что способствует осмыслению изученного на новом качественном уровне и подготовить учащихся к итоговой контрольной работе по теме.

Просмотр содержимого документа
«Геометрия 11 класс. Зачет по теме: Объем шара и его частей. Площадь сферы.»

Осевое сечение сферы есть окружность

МКОУ «Погорельская СОШ»

Осевое сечение сферы есть окружность

ОБЪЕМ УСЕЧЕННОГО КОНУСА

Осевое сечение сферы есть окружность

Формулы для вычисления объема: шара, шарового сектора, шарового слоя, шарового сектора и площади сферы

где R – это радиус сферы

где R – это радиус шара

где R – это радиус шара, а h – это высота сегмента

где V 1 – это объем одного шарового сегмента, а V 2 – это объем второго шарового сегмента

где R – это радиус шара, а h – это высота шарового сегмента

Осевое сечение сферы есть окружность

Вписать в текст недостающие по смыслу слова .

  • Всякое сечение шара плоскостью есть круг. Центр этого круга есть …………………… перпендикуляра , опущенного из центра шара на секущую плоскость.

2. Центр шара является его ………………….……. симметрии.

3. Осевое сечение шара есть ………………………….

4. Линии пересечения двух сфер есть…………………

5. Плоскости, равноудаленные от центра, пересекают шар по ……………. кругам.

6. Около любой правильной пирамиды можно описать сферу , причем ее центр лежит на ……………….. пирамиды.

Осевое сечение сферы есть окружность

Вписать в текст недостающие по смыслу слова.

  • Любая диаметральная плоскость шара является его ………………… симметрии.

2. Осевое сечение сферы есть………………..

3. Центр шара , описанного около правильной пирамиды , лежит на …………………. пирамиды.

4. Радиус сферы , проведенный в точку касания сферы и плоскости ………………. ……………………..к касательной плоскости.

5. Касательная плоскость имеет с шаром только одну общую точку …………………….

6. В любую правильную пирамиду можно вписать сферу , причем ее центр лежит на ……………… .…….пирамиды.

Осевое сечение сферы есть окружность

Плоскость перпендикулярная диаметру шара, делит его части 3см и 9см. Найдите объем шара ?

Два равных шара расположены так, что центр одного лежит на поверхности другого. Как относится объем общей части шаров к объему целого шара ?

Какую часть объема шара составляет объем шарового сегмента, у которого высота равна 0,1 диаметра шара, равного 20см ?

Осевое сечение сферы есть окружность

Объем шара радиуса R равен V . Найдите : объем шара радиуса : а) 2 R б) 0,5 R

Чему равен объем шарового сектора, если радиус окружности основания равен 60см, а радиус шара-75см.

Осевое сечение сферы есть окружность

БЫСТРО И КРАТКО НАПИШИТЕ ОТВЕТЫ НА ВОПРОСЫ:

  • Сколько сфер можно провести:

а) через одну и ту же окружность;

б) через окружность и точку, не принадлежащую её плоскости?

2. Сколько сфер можно провести через четыре точки, являющиеся вершинами:

б) равнобедренной трапеции;

3. Верно ли, что через любые две точки сферы проходит один большой круг?

4. Через какие две точки сферы можно провести несколько окружностей большого круга?

5. Как должны быть расположены две равные окружности, чтобы через них могла пройти сфера того же радиуса?

Иметь общий центр

Осевое сечение сферы есть окружность

Вписать в текст недостающие по смыслу слова.

  • Любая диаметральная плоскость шара является его ………………… симметрии.

2. Осевое сечение сферы есть………………..

3. Центр шара , описанного около правильной пирамиды , лежит на …………………. пирамиды.

4. Радиус сферы , проведенный в точку касания сферы и плоскости ………………. ……………………..к касательной плоскости.

5. Касательная плоскость имеет с шаром только одну общую точку …………………….

6. В любую правильную пирамиду можно вписать сферу , причем ее центр лежит на ……………… .…….пирамиды.

Осевое сечение сферы есть окружность

Тестовая самостоятельная работа ур.52

Уровень1 Вариант 1

1.На расстоянии 12 см от центра шара проведено сечение, радиус которого равен 9см. Найдите объем шара и площадь его поверхности.

2. Сфера радиуса 3см имеет цент в точке О (4;-2;1). Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости ОХУ. Найдите объем шара, ограниченного данной сферой.

Уровень 1 Вариант 2

1.Через точку, лежащую на сфере, проведено сечение радиуса 3см под углом 60° к радиусу сферы, проведенному в данную точку. Найдите площадь сферы и объем шара.

2. Сфера радиуса 3 имеет центр в точке О (-2;5;3). Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости ОХ Z . Найдите площадь данной сферы.

Осевое сечение сферы есть окружность

Тестовая самостоятельная работа ур.52

Уровень2 Вариант 1

1.На расстоянии 2√7см от центра шара проведено сечение. Хорда этого сечения, равна 4см, стягивая угол 90°. Найдите объем шара и площадь его поверхности.

2. Сфера с центром в точке О (2;1;-2) проходит через начало координат. Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно оси абцисс. Найдите объем шара, ограниченного полученной сферой.

Уровень2 Вариант 2

1.На расстоянии 4см от центра шара проведено сечении. Хорда, удаленная от центра этого сечения на √5см, стягивая угол 120°. Найдите объем шара и площадь его поверхности.

2. Сфера с центром в точке О (-1;-2;2) проходит через начало координат. Составьте уравнение сферы, в которую перейдет данная сфера при симметрии относительно плоскости Z =1. Найдите площадь сферы.

Осевое сечение сферы есть окружность

  • Диаметр шара ½ дм. Вычислите объём шара и площадь сферы.

2. Волейбольный мяч имеет радиус 12 дм. Какой объём воздуха содержится в мяче?

  • Радиус шара ¾ дм. Вычислите объём шара и площадь сферы.

2. Футбольный мяч имеет диаметр 30 дм. Какой объём воздуха содержится в мяче?

Осевое сечение сферы есть окружность

  • Записать формулы площади сферы, объема шара и его частей.
  • Решить задачи:
  • Записать формулы площади сферы, объема шара и его частей.
  • Решить задачи:

1. Объем шара равен 36Псм³. Найдите площадь сферы, ограничивающей данный шар.

2. В шаре радиуса 15см проведено сечение, площадь которого равна 81см². Найдите объем меньшего шарового сегмента, отсекаемого плоскостью сечения.

3. Найдите объем шарового сектора, если радиус шара равен 6см, а высота соответствующего сегмента составляет шестую часть диаметра шара.

1. Площадь поверхности шара равна 144П см². Найдите объем данного шара.

2. На расстоянии 9м от центра шара проведено сечение, длина окружности которого равна 24П см. Найдите объем меньшего шарового сегмента, отсекаемого плоскостью сечения.

3. Найдите объем шарового сектора, если радиус шара равен 6см, а высота конуса, образующего сектор, составляет треть диаметра шара.

Осевое сечение сферы есть окружность113,04=4πR³/3 = R³=27, R=3. S=4πR², S=4π3²=36π. Ответ: 3,36π. Дано: шар; S=64π см² Найти : R, V Решение: S=4πR², 64π=4πR², = R=4 V=4πR³/3, V=4π4³/3=256π/3. Ответ: 4,256π/3. 3. Дано: шаровой сегмент, r осн.=60 см, Rшара=75 см. Найти: Vшарового сегмента. Решение: V=πh²(R-⅓h) О ₁ С=√R²-r²=√75²-60²=45 h= ОС-ОС ₁ =75-45=30 V=π·30²·(75-⅓·30)=58500π. Ответ: 58500π. » width=»640″

Решение задач с самопроверкой.

Дано: шар; V=113,04 см³,

Решение: V=4πR³/3, = 113,04=4πR³/3 = R³=27, R=3.

Дано: шар; S=64π см²

Решение: S=4πR², 64π=4πR², = R=4

3. Дано: шаровой сегмент, r осн.=60 см, Rшара=75 см.

Найти: Vшарового сегмента.

Решение: V=πh²(R-⅓h) О ₁ С=√R²-r²=√75²-60²=45

h= ОС-ОС ₁ =75-45=30 V=π·30²·(75-⅓·30)=58500π.

Осевое сечение сферы есть окружность

Отрази свое настроение смайликом.

Возьмите смайлик соответствующий Вашему настроению на конец урока и, уходя прикрепите его на доске с магнитной основой.

Осевое сечение сферы есть окружность

Повторить формулы объемов шара, шарового сегмента, шарового слоя, шарового сектора. №723, №724, №755

  • Повторить формулы объемов шара, шарового сегмента, шарового слоя, шарового сектора. №723, №724, №755

Литература и интернет ресурсы

Учебник по геометрии 10-11 класс Атанасян Л.С., 2008 год

Гаврилова Н.Ф. Поурочные разработки по геометрии 11 класс

Видео:11 класс, 19 урок, Сфера и шарСкачать

11 класс, 19 урок, Сфера и шар

Осевое сечение сферы есть окружность

19.1. Определения шара, сферы и их элементов

С шаром и сферой мы уже знакомы. Напомним их определения.

Определение. Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R ( R > 0). Данная точка называется центром шара, а данное расстояние R — радиусом шара .

Определение. Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно центром и радиусом сферы.

Осевое сечение сферы есть окружность

На рисунке 193 изображён шар с центром О и радиусом R = OА.

Из определений шара и сферы следует, что шар с центром О и радиусом R является объединением двух множеств точек: 1) множества точек M пространства, для которых OM (они называются внутренними точками шара и образуют его внутренность); 2) множества всех М, для которых ОМ = R (эти точки являются граничными точками шара, а их объединение составляет границу шара, которая называется шаровой поверхностью и является сферой c центром О и радиусом R ) .

Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара . Концы любого диаметра шара называются диаметрально nротивоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара ( сферы ) . На рисунке 193 отрезки ОА, ОВ, ON, OS — радиусы шара; отрезки АВ , NS — диаметры шара; A и B — диаметрально противоположные точки шара. Из определения диаметра шара следует, что он равен удвоенному радиусу шара.

Осевое сечение сферы есть окружность

Покажем, что шар — тело вращения. Для этого рассмотрим полукруг F с центром О и радиусом R (рис. 194, а ). При вращении полукруга F вокруг прямой, содержащей его диаметр NS, образуется некоторое тело F 1 (рис. 194, б ). Так как вращение вокруг прямой — движение и точка О принадлежит оси l вращения, то каждая точка тела F 1 удалена от точки O на расстояние, не большее R (движение сохраняет расстояния между точками). Это означает, что тело F 1 есть шар с центром О и радиусом R. Кроме того, при вращении границы полукруга — полуокружности — вокруг прямой l образуется сфера. Прямая, содержащая любой диаметр шара, может быть рассмотрена как ось вращения. Следовательно, сечением шара плоскостью, перпендикулярной его оси вращения l и пересекающей шар, является круг, а сечением сферы такой плоскостью — окружность этого круга; центр круга (окружности) есть точка пересечения секущей плоскости с осью l.

Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара ( сферы ) . Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность — большой окружностью ; большая окружность является пересечением сферы и её диаметральной плоскости.

19.2. Изображение сферы

Осевое сечение сферы есть окружность

Рассмотрим сферу, диаметр NS которой проведён вертикально (рис. 195, а ). Большая окружность, по которой сферу пересекает диаметральная плоскость, перпендикулярная диаметру (оси) NS, называется экватором , а точки N и S — полюсами сферы . Окружность, ограничивающая круг — изображение сферы, — называется абрисом или очерковой линией .

Типичная ошибка (!) при изображении сферы (рис. 195, б ) в том, что, изображая её экватор эллипсом, полюсы изображают расположенными на абрисе.

Для верного и наглядного изображения сферы вспомним, как в курсе черчения изображают фигуру на комплексном двухкартинном чертеже (эпюре) посредством ортогонального её проектирования на две взаимно перпендикулярные плоскости, одну из которых называют фронтальной (обозначают V ) , а другую — профильной (обозначают W ) плоскостями проекций.

Сферу расположим так, чтобы её ось N ′ S ′ была параллельна профильной ( W ), но не параллельна фронтальной ( V ) плоскостям проекций. Тогда ортогональные проекции сферы на плоскости V и W имеют вид, изображённый на рисунке 196. На нём: равные круги — проекции сферы на плоскости V и W ; отрезки A 1 B 1 и N 1 S 1 — профильные проекции соответственно экватора и оси сферы; точки N, S — фронтальные проекции полюсов (строятся с помощью линий связи); точки А, В — фронтальные проекции концов диаметра экватора, параллельного фронтальной плоскости (строятся с помощью линий связи); отрезок CD — фронтальная проекция диаметра C ′ D ′ сферы, перпендикулярного профильной плоскости; эллипс с осями АВ и CD — фронтальная проекция экватора. При таком расположении относительно плоскостей проекций сфера изображается так, как показано на рисунках 195, a ; 196, a.

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

Обратите внимание! Полюсы N и S не лежат на абрисе, и экватор изображается эллипсом. При этом положение полюсов N и S и положение вершин А и В эллипса-экватора взаимосвязаны.

Действительно, из равенства △ ОBF = △ ЕNО (см. рис. 196, а ) следует: OВ = EN, BF = NO. Это означает: а) если изображены полюсы N и S сферы, то вершины А и В эллипса — изображения экватора определяются из равенств OВ = ОА = NE, где NE || OD ; б) если изображён экватор (т. е. дана малая ось AB эллипса-экватора), то положение полюсов N и S определяется из равенств ON = OS = BF, где BF || OD.

На рисунке 197, а — верное и наглядное изображение сферы, на рисунке 197, б — изображение сферы верное (почему?), но не наглядное; на рисунке 197, в — неверное изображение (почему?).

 ЗАДАЧА (3.106). Найти в пространстве множество вершин всех прямых углов, опирающихся на данный отрезок АВ.

Решени е. Если ∠ АМВ = 90 ° , то точка М принадлежит окружности с диаметром АВ (рис. 198, a ).

Осевое сечение сферы есть окружность

Проведём произвольную плоскость α , содержащую отрезок АВ. В этой плоскости множество всех точек М, из которых отрезок AB виден под прямым углом, есть окружность, для которой отрезок AB — диаметр. Точки А и В этому множеству точек не принадлежат. (Почему?) Таким образом, искомое множество вершин прямых углов, опирающихся на отрезок AB , есть сфера с диаметром AB . Точки А и В этому множеству точек-вершин не принадлежат.

19.3. Уравнение сферы

Составим уравнение сферы с центром А ( a ; b ; с ) и радиусом R в декартовой прямоугольной системе координат Oxyz.

Пусть М ( x ; у ; z ) — любая точка этой сферы (рис. 199). Тогда MA = R или MA 2 = R 2 . Учитывая, что MA 2 = ( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 , получаем искомое уравнение cферы

( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 .

Если начало системы координат совпадает с центром A сферы, то a = b = c = 0 , а сфера в такой системе координат имеет уравнение

x 2 + y 2 + z 2 = R 2 .

Из полученных уравнений следует, что сфера — поверхность второго порядка.

Так как для любой точки М ( х ; у ; z ) шара с центром А ( a ; b ; с ) и радиусом R выполняется МА ⩽ R, то этот шар может быть задан неравенством

( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 ⩽ R 2 .

При этом для всех внутренних точек М шара выполняется условие МА 2 R 2 , т. е.

Осевое сечение сферы есть окружность

( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 R 2 ,

для точек М шаровой поверхности — условие

т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 ,

для точек М вне шара — условие

т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 > R 2 .

19.4. Пересечение шара и сферы с плоскостью

Рассмотрим подробнее вопрос о пересечении шара и сферы с плоскостью. Имеет место следующая теорема.

Осевое сечение сферы есть окружность

Теорема 30 (о пересечении шара и сферы с плоскостью ) . 1) Если расстояние от центра шара до данной плоскости меньше радиуса шара, то пересечением шара с плоскостью является круг. Центром этого круга является основание перпендикуляра, проведённого из центра шара на плоскость, или сам центр шара, если плоскость проходит через этот центр. Пересечением сферы с плоскостью является окружность указанного круга. Радиус r сечения в этом случае равен r = Осевое сечение сферы есть окружность, где R — радиус шара, a d — расстояние от центра шара до плоскости сечения. 2) Если расстояние от центра шара до данной плоскости равно радиусу шара, то плоскость имеет с шаром и ограничивающей его сферой только одну общую точку. 3) Если расстояние от центра шара до данной плоскости больше радиуса, то плоскость не имеет с шаром общих точек.

Доказательств о. Пусть точка О — центр шара, R — его радиус; α — данная плоскость, точка A — основание перпендикуляра, проведённого из центра O на плоскость α . Обозначим ρ ( О ; α ) = | ОА | = d — расстояние от центра шара до плоскости α .

Рассмотрим каждый из случаев взаимного расположения шара и данной плоскости α .

Осевое сечение сферы есть окружность

1) ρ ( O ; α ) = d R и плоскость α не проходит через центр О шара (рис. 200). Докажем, что пересечение шара и плоскости есть круг с центром А и радиусом r = Осевое сечение сферы есть окружность. Для этого достаточно убедиться, что любая точка пересечения шара и плоскости α есть точка круга с центром А и радиусом r = Осевое сечение сферы есть окружностьи, обратно, любая точка этого круга есть точка указанного пересечения.

Действительно, пусть М — произвольная точка шара, принадлежащая плоскости α (см. рис. 200). В прямоугольном треугольнике AOM по теореме Пифагора ОM 2 = ОА 2 + АМ 2 , откуда AM = Осевое сечение сферы есть окружность. Так как точка М принадлежит шару, то ОМ ⩽ R, тогда OM 2 – OA 2 ⩽ R 2 – d 2 , поэтому АМ ⩽ Осевое сечение сферы есть окружность. Это означает, что точка М сечения шара плоскостью α находится от точки А на расстоянии, не большем Осевое сечение сферы есть окружность, следовательно, она принадлежит кругу с центром А и радиусом Осевое сечение сферы есть окружность.

Обратно, пусть М — произвольная точка плоскости α , принадлежащая кругу с центром А и радиусом r = Осевое сечение сферы есть окружность. В прямоугольном треугольнике AOM по теореме Пифагора OM 2 = ОA 2 + AM 2 . Так как AM ⩽ r , то OM 2 ⩽ OA 2 + r 2 = d 2 + R 2 – d 2 = R 2 , откуда OM ⩽ R . Значит, точка М принадлежит данному шару. Учитывая, что точка М принадлежит и плоскости α , приходим к выводу: точка M принадлежит пересечению данного шара и плоскости α .

Если неравенства, которые использовались в предыдущем доказательстве, заменить равенствами, то, рассуждая аналогично, можно доказать, что при d R пересечением сферы и плоскости является окружность с центром А и радиусом r = Осевое сечение сферы есть окружность. Проделайте это самостоятельно.

Осевое сечение сферы есть окружность

Если плоскость α проходит через центр O шара, то d = 0, значит, r = R, т. е. сечением шара такой плоскостью является большой круг, а сечением сферы — большая окружность (см. рис. 200).

2) ρ ( O ; α ) = d = OA = R (рис. 201).

Так как ОА = ρ ( O ; α ) = R, то точка А, являющаяся основанием перпендикуляра из центра О шара на плоскость α , принадлежит шаровой поверхности, ограничивающей данный шар.

Осевое сечение сферы есть окружность

Пусть M — произвольная точка плоскости α , отличная от точки A (см. рис. 201). Тогда длины наклонной ОМ и перпендикуляра OA, проведённых из точки О к плоскости α , удовлетворяют неравенству OM > ОА = R. Значит, точка М не принадлежит шару. Следовательно, плоскость α имеет только одну общую точку с шаром — точку А.

3) ρ ( О ; α ) = ОА = d > R (рис. 202). Для любой точки М плоскости α выполняется (почему?) ОМ ⩾ d > R. Это означает, что на плоскости α нет точек шара. Теорема доказана. ▼

 ЗАДАЧА (3.161). Через середину радиуса шара проведена перпендикулярная к нему плоскость. Радиус шара равен R. Найти: а) площадь получившегося сечения; б) площади боковой и полной поверхностей конуса, основанием которого служит получившееся сечение шара, а вершиной — центр шара; в) площади боковой и полной поверхностей правильной треугольной пирамиды, вписанной в этот конус.

Решени е. а) Пусть точка O — центр шара, OD — его радиус, точка С — середина радиуса OD ; α — секущая плоскость, проходящая через точку С перпендикулярно OD.

Рассмотрим сечение шара диаметральной плоскостью, проходящей через его радиус OD. Этим сечением является большой круг с центром О и радиусом R (рис. 203); АВ — диаметр круга — сечения данного шара плоскостью α .

Так как АВ ⟂ OD и точка С — середина радиуса OD, то отрезок AB равен стороне правильного треугольника, вписанного в окружность радиуса R, значит, АВ = R Осевое сечение сферы есть окружность, откуда

Осевое сечение сферы есть окружность

АС = r = Осевое сечение сферы есть окружность, где r — радиус сечения шара плоскостью α . Тогда площадь этого сечения равна π r 2 = Осевое сечение сферы есть окружность.

б) Найдём площадь поверхности конуса с вершиной О и радиусом основания r = Осевое сечение сферы есть окружность.

Осевое сечение сферы есть окружность

Образующая ОЕ конуса (рис. 204) равна радиусу R данного шара. Поэтому площадь боковой поверхности этого конуса равна

π r • R = π • Осевое сечение сферы есть окружность• R = Осевое сечение сферы есть окружность,

а площадь его полной поверхности — Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружностьπ R 2 • (2 + Осевое сечение сферы есть окружность).

в) Найдём площадь поверхности правильной треугольной пирамиды OEFK, вписанной в конус, радиус основания которого СK = r = Осевое сечение сферы есть окружность, боковое ребро OE пирамиды равно радиусу R данного шара (см. рис. 204).

Так как △ ЕFK — правильный, вписанный в окружность радиуса r = Осевое сечение сферы есть окружность, то сторона этого треугольника равна r Осевое сечение сферы есть окружность, т. е. EF = Осевое сечение сферы есть окружность. Тогда S △ EFK = Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность.

Площадь боковой поверхности пирамиды равна 3 S △ EOF = Осевое сечение сферы есть окружностьEF • ОН, где OH — апофема пирамиды. В прямоугольном треугольнике OHF находим

ОН = Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность.

Тогда Осевое сечение сферы есть окружностьEF • OH = Осевое сечение сферы есть окружность— площадь боковой поверхности пирамиды.

Следовательно, площадь полной поверхности пирамиды равна

Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружностьR 2 ( Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность).

Ответ: a) Осевое сечение сферы есть окружность; б) Осевое сечение сферы есть окружностьπ R 2 (2 + Осевое сечение сферы есть окружность); в) Осевое сечение сферы есть окружность; Осевое сечение сферы есть окружностьR 2 ( Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность).

19.5. Плоскость, касательная к сфере и шару

Из теоремы 30 следует, что плоскость может иметь со сферой (с шаром) только одну общую точку.

Определение. Плоскость, имеющая только одну общую точку со сферой (с шаром), называется касательной плоскостью к сфере (шару), а их единственная общая точка называется точкой касания (рис. 205).

Осевое сечение сферы есть окружность

Также говорят, что плоскость касается сферы (шара) .

Любая прямая, лежащая в касательной плоскости к сфере и проходящая через точку их касания, называется касательной прямой к сфере ; эта прямая имеет со сферой единственную общую точку — точку касания, и радиус сферы, проведённый в точку касания, перпендикулярен касательной прямой.

Осевое сечение сферы есть окружностьЗаметим, что если прямая a касается сферы в точке М , то эта прямая касается в точке М той окружности большого круга, которая является сечением сферы и диаметральной плоскости, проходящей через прямую a.

Справедливо и обратное: если прямая a касается окружности большого круга сферы в точке М , то эта прямая касается в точке М самой сферы.

Более того, так как прямая a, касающаяся сферы в точке М , имеет со сферой лишь одну общую точку — точку М , то эта прямая касается любой окружности, по которой пересекаются данная сфера и любая (не только диаметральная) плоскость, проходящая через прямую a. А поскольку радиус, проведённый в точку касания прямой и окружности, перпендикулярен касательной прямой, то центры всех этих окружностей — полученных сечений сферы — лежат в плоскости, проходящей через точку М перпендикулярно касательной прямой a. При этом, если точка О — центр данной сферы радиуса R , точка А — центр окружности радиуса r , по которой пересекает сферу одна (любая) из плоскостей, проходящих через касательную в точке М прямую к данной сфере, ϕ — величина угла между этой секущей плоскостью и проходящей через точку М диаметральной плоскостью данной сферы, то справедливо равенство r = R • cos ϕ ( △ ОАМ — прямоугольный, так как отрезок ОА перпендикулярен секущей плоскости (почему?)). Осевое сечение сферы есть окружность

Для плоскости, касательной к сфере, справедливы теоремы, аналогичные теоремам о прямой, касательной к окружности на плоскости.

Осевое сечение сферы есть окружность

Теорема 31. Если плоскость касается сферы, то она перпендикулярна радиусу, проведённому в точку касания.

Доказательств о. Пусть дана сфера с центром O и радиусом R. Рассмотрим плоскость α , касающуюся данной сферы в точке M (см. рис. 205) и докажем, что ОM ⟂ α .

Предположим, что радиус ОM — не перпендикуляр, а наклонная к плоскости α . Значит, расстояние от центра сферы до плоскости α , равное длине перпендикуляра, проведённого из центра О на плоскость α , меньше радиуса. Тогда по теореме 30 плоскость α пересекает сферу по окружности. Но по условию теоремы плоскость α касается сферы и имеет с ней единственную общую точку M. Пришли к противоречию, которое и доказывает, что OM ⟂ α . Теорема доказана. ▼

Справедлива обратная теорема.

Осевое сечение сферы есть окружность

Теорема 32. Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведённому в эту точку, то она касается сферы.

Доказательств о. Пусть плоскость α проходит через точку M сферы и перпендикулярна радиусу ОM (см. рис. 205). Значит, расстояние от центра сферы до плоскости равно радиусу ОM. Тогда по теореме 30 плоскость α и сфера имеют единственную общую точку M, следовательно, плоскость α касается сферы (в точке M ). Теорема доказана. ▼

Так как сечение шара плоскостью есть круг, то можно доказать, что для шара выполняются следующие метрические соотношения:

— диаметр шара, делящий его хорду пополам, перпендикулярен этой хорде;

— отрезки всех касательных прямых, проведённых к шару из одной расположенной вне шара точки, равны между собой (они образуют поверхность конуса с вершиной в данной точке, а точки касания этих прямых — окружность основания этого конуса);

— произведение длин отрезков хорд шара, проходящих через одну и ту же внутреннюю точку шара, есть величина постоянная (равная R 2 – a 2 , где R — радиус шара, a — расстояние от центра шара до данной точки);

Осевое сечение сферы есть окружность

— если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно a 2 – R 2 , где R — радиус шара, a — расстояние от центра шара до данной точки).

19.6. Вписанные и описанные шары и сферы

Определение. Шар называется вписанным в цилиндр, если основания и каждая образующая цилиндра касаются шара (рис. 206).

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

Цилиндр в таком случае называется описанным около шара. В цилиндр можно вписать шар тогда и только тогда, когда он равносторонний.

Определение. Шар называется описанным около цилиндра, если основания цилиндра служат сечениями шара (рис. 207).

Цилиндр при этом называют вписанным в шар. Около любого цилиндра можно описать шар. Центром шара служит середина оси цилиндра, а радиус шара равен радиусу круга, описанного около осевого сечения цилиндра.

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

Определение. Шар называется описанным около конуса, если основание конуса — сечение шара, а вершина конуса принадлежит поверхности шара (рис. 208).

Конус при этом называют вписанным в шар.

Центр шара, описанного около конуса, совпадает с центром круга, описанного около осевого сечения конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в конус, если основание и все образующие конуса касаются шара.

Конус при этом называют описанным около шара (рис. 209). Центр вписанного в конус шара совпадает с центром круга, вписанного в осевое сечение конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в многогранник, если он касается всех граней многогранника.

Многогранник в таком случае называют описанным около шара (рис. 210).

Не во всякий многогранник можно вписать шар. Например, вписать шар можно в любую треугольную или правильную пирамиду. А в прямую призму, в основании которой лежит прямоугольник, не являющийся квадратом, шар вписать нельзя.

Осевое сечение сферы есть окружность

При нахождении радиуса r вписанного в многогранник шара (если таковой существует) удобно пользоваться соотношением

V многогр = Осевое сечение сферы есть окружность• r • S полн. поверх .

Шар называется вписанным в двугранный угол, если он касается его граней. Центр вписанного в двугранный угол шара лежит на биссекторной плоскости этого двугранного угла. При этом для радиуса r шара, вписанного в двугранный угол, величины α этого угла и расстояния m от центра шара до ребра двугранного угла справедлива формула: r = m • sin Осевое сечение сферы есть окружность. Этой формулой часто пользуются при решении задач.

Шар называется вписанным в многогранный угол, если он касается всех граней многогранного угла. При решении задач, в которых рассматриваются вписанные в многогранный угол шары, удобно пользоваться соотношением: r = m • sin Осевое сечение сферы есть окружность, где r — радиус шара, вписанного в многогранный угол, m — расстояние от центра шара до ребра многогранного угла, α — величина двугранного угла при этом ребре.

Если все плоские углы трёхгранного угла равны по 60 ° , то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно 3 r ; если все плоские углы трёхгранного угла прямые, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно r Осевое сечение сферы есть окружность. Эти соотношения часто используют при решении задач, в которых рассматриваются те или иные комбинации шаров с правильными тетраэдрами или прямоугольными параллелепипедами.

Определение. Шар называется описанным около многогранника, если все вершины многогранника принадлежат поверхности шара (рис. 211) . Многогранник при этом называют вписанным в шар.

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

Не около всякого многогранника можно описать шар. Например, около любой правильной или любой треугольной пирамиды шар описать можно, а около четырёхугольной пирамиды, в основании которой лежит ромб, не являющийся квадратом, шар описать нельзя (около ромба нельзя описать окружность). Более того, нельзя описать шар около любой наклонной призмы.

Вообще, для того чтобы около многогранника можно было описать шар, необходимо, чтобы около любой его грани можно было описать круг. При этом центр описанного шара может лежать как внутри многогранника, так и вне его или на его поверхности (даже на ребре многогранника), и проектируется в центр описанного около любой грани круга. Кроме того, перпендикуляр, опущенный из центра описанного около многогранника шара на ребро многогранника, делит это ребро (как хорду шара) пополам.

Мы уже говорили о пирамидах, все рёбра которых одинаково наклонены к основанию. Около таких пирамид всегда можно описать шар, центр которого лежит на луче, содержащем высоту пирамиды.

Высота h пирамиды, радиус R к описанного около основания пирамиды круга и радиус R описанного около этой пирамиды шара связаны соотношением:

( R – h ) 2 + Осевое сечение сферы есть окружность= R 2 .

Приведём формулы для вычисления радиусов вписанных и описанных шаров для правильных многогранников с ребром a.

Осевое сечение сферы есть окружность

В задачах иногда ещё рассматривают шары, касающиеся всех рёбер данного многогранника. Для куба, например, такой шар существует и его радиус равен Осевое сечение сферы есть окружность, где a — ребро куба.

19.7. Площади поверхностей шара и его частей

Часть шара, заключённая между секущей плоскостью и одной из двух частей его сферической поверхности, называется шаровым сегментом (рис. 212 и 214). Поверхность шарового сегмента называется сегментной поверхностью : она представляет собой часть шаровой поверхности, отсекаемую какой-нибудь плоскостью. Круг АВ, по которому плоскость пересекает шар, называется основанием шарового сегмента, а окружность этого круга — основанием сегментной поверхности. Отрезок ОС радиуса, перпендикулярного секущей плоскости, называется высотой шарового сегмента ( сегментной поверхности ) .

Осевое сечение сферы есть окружность

Часть шара, заключённая между двумя параллельными секущими плоскостями, называется шаровым слоем (см. рис. 212, 214). Поверхность шарового слоя называется шаровым поясом. Шаровой пояс — часть шаровой поверхности, заключённая между двумя параллельными секущими плоскостями. Перпендикуляр, проведённый из точки одного основания к плоскости другого, называется высотой шарового слоя ( шарового пояса ).

Сегментную поверхность и шаровой пояс можно рассматривать как поверхности вращения: в то время, как при вращении полуокружности CAA 1 D (см. рис. 212) вокруг диаметра CD образуется шаровая поверхность (сфера), при вращении дуги СА этой полуокружности вокруг того же диаметра образуется сегментная поверхность, а при вращении дуги AA 1 — шаровой пояс.

Тело, образованное при вращении кругового сектора с углом ϕ ( ϕ ° ) вокруг прямой, которая содержит диаметр круга, не имеющий с круговым сектором общих внутренних точек, называется шаровым сектором .

Осевое сечение сферы есть окружность

Из этого определения следует, что поверхность шарового сектора состоит из сегментной поверхности и боковой поверхности конуса (рис. 213, а , б ) или из поверхности шарового пояса и боковых поверхностей двух конусов (рис. 213, в, г ).

На рисунке 214 изображены различные элементы шара и сферы (шаровой сектор имеет простейший вид).

Рассмотрим вопрос о вычислении площадей сферы, сегментной поверхности, шарового пояса и шарового сектора.

Осевое сечение сферы есть окружность

Осевое сечение сферы есть окружность

а) Площадь сферы. Пусть ABCDEF — правильная ломаная линия, вписанная в данную полуокружность; a — длина её апофемы (рис. 215). При вращении полуокружности вокруг её диаметра AF образуется сфера, а при вращении ломаной ABCDEF вокруг этого же диаметра AF образуется некоторая поверхность Ф .

За площадь сферы, образованной вращением полуокружности вокруг её диаметра, принимают предел, к которому стремится площадь поверхности Ф, образованной вращением вокруг того же диаметра правильной n- звенной ломаной линии, вписанной в полуокружность, при n → + ∞ ( число сторон неограниченно возрастает ).

Поверхность Ф является объединением поверхностей, образованных вращением звеньев ломаной линии, вписанной в полуокружность, вокруг её диаметра. Этими поверхностями являются боковые поверхности либо конуса (для первого и последнего звеньев ломаной), либо цилиндра (для звеньев, параллельных оси вращения; их может и не быть), либо усечённого конуса (для всех остальных звеньев ломаной).

При вычислении площадей получившихся поверхностей воспользуемся следствиями из теорем 26, 27, 29. Площадь S i ( i = 1, 2, . n ) поверхности, образованной вращением любого звена, равна произведению 2 π , расстояния b i от середины звена до центра сферы и длины m i проекции этого звена на ось вращения, т. е. S i вращ = 2 π • b i • m i .

Так как ломаная — правильная, то все b i равны апофеме a n данной n- звенной ломаной, а m 1 + m 2 + m 3 + . + m n = 2 R и S 1 + S 2 + S 3 + . + S n = 4 π • a n • R . Причём a n = Осевое сечение сферы есть окружность, где p n — периметр данной ломаной. Поскольку ограниченная переменная величина Осевое сечение сферы есть окружностьпри n → + ∞ становится бесконечно малой, то при n → ∞ апофема a n стремится к радиусу R полуокружности.

Следовательно, предел площади поверхности Ф при n → ∞ равен 4 π R • R = 4 π R 2 . Этот предел и принимается за величину площади сферы радиуса R :

S сферы = 4 π R 2 .

б) Площади сегментной поверхности и шарового пояса. Если правильная ломаная вписана не в полуокружность, а в некоторую её часть, например в дугу AD (см. рис. 215), при вращении которой образуется сегментная поверхность, то рассуждения, аналогичные предыдущим, приводят к выводу:

S сегм. поверх = 2 π Rh ,

где h — высота сферического сегмента.

Если же ломаная вписана в дугу ВЕ (см. рис. 215), при вращении которой образуется шаровой пояс, то получим:

S шар. пояса = 2 π Rh ,

где h — высота шарового пояса.

Проделайте эти рассуждения самостоятельно.

в) Площадь поверхности шарового сектора. Эта площадь может быть получена как сумма площадей поверхности сферического сегмента и боковой поверхности одного конуса (см. рис. 213, а, б ) или как сумма площадей поверхности сферического слоя и боковых поверхностей двух конусов (см. рис. 213, в, г ).

Рассмотрим частный случай (см. рис. 213, а, б ). Если R — радиус сферы, h — высота шарового сегмента, то площадь боковой поверхности конуса с вершиной в центре сферы, образующей R , и радиусом основания Осевое сечение сферы есть окружность(докажите это) равна π R Осевое сечение сферы есть окружность, а площадь сегментной поверхности равна 2 π Rh. Значит, для площади шарового сектора справедлива формула

S шар. сект = π R (2 h + Осевое сечение сферы есть окружность) .

 ЗАДАЧА (3.418). Основанием треугольной пирамиды SABC является равносторонний треугольник АВС , сторона которого равна 4. Известно также, что AS = BS = Осевое сечение сферы есть окружность, a SC = 3. Найти площадь сферы, описанной около этой пирамиды.

Осевое сечение сферы есть окружность

Решени е. Решим эту задачу двумя методами.

Первый метод ( геометрич е ски й). Пусть точка О — центр сферы, описанной около данной пирамиды; D — точка пересечения медиан правильного △ АВС ; точка Е — середина отрезка АВ (рис. 216).

Центр О сферы равноудалён от всех вершин △ АBС, поэтому принадлежит прямой, проходящей через точку D перпендикулярно плоскости АВС.

Так как точка Е — середина отрезка АВ, то SE ⟂ АВ ( AS = BS ) и СЕ ⟂ АВ ( △ АВС — правильный). Значит, по признаку перпендикулярности прямой и плоскости AB ⟂ ( CSE ) , поэтому ( CSE ) ⟂ ( ABC ) (по признаку перпендикулярности двух плоскостей). Это означает, что прямая OD, а следовательно, и точка О — центр сферы — лежат в плоскости CSE.

Точка D является центром окружности, описанной около △ АВС. (По этой окружности плоскость АВС пересекает сферу, описанную около данной пирамиды.) Если L — точка пересечения прямой СЕ и упомянутой окружности, то CL — её диаметр. Найдём длину диаметра CL.

В правильном △ AВС имеем: CE = Осевое сечение сферы есть окружность= 2 Осевое сечение сферы есть окружность; CD = Осевое сечение сферы есть окружностьСЕ = Осевое сечение сферы есть окружность. Тогда CL = 2 CD = Осевое сечение сферы есть окружность.

Далее △ BSE ( ∠ BES = 90 ° ): SE 2 = SB 2 – BE 2 = 19 – 4 = 15 (по теореме Пифагора); △ SEC (по теореме косинусов):

cos C = Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность;

△ SLC (по теореме косинусов):

SL 2 = SC 2 + CL 2 – 2 SC • CL • cos C = Осевое сечение сферы есть окружность⇒ SL = Осевое сечение сферы есть окружность.

Плоскость CSL проходит через центр О сферы, следовательно, пересекает сферу по большой окружности, которая описана около △ CSL. Значит, радиус R этой окружности равен радиусу сферы, описанной около данной пирамиды. Найдём длину радиуса R.

В треугольнике CSL имеем Осевое сечение сферы есть окружность= 2 R. Так как в этом треугольнике cos C = Осевое сечение сферы есть окружность, то sin C = Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность. Тогда R = Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность: Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность.

Находим площадь Q сферы:

Q = 4 π R 2 = 4 π • Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружностьπ .

Второй метод ( коо р динатны й). Введём в пространстве декартову прямоугольную систему координат так, чтобы её начало совпадало с вершиной А данной пирамиды, направление оси абсцисс — с направлением луча АС, ось аппликат была перпендикулярна плоскости основания АВС пирамиды (рис. 217).

В этой системе координат вершины основания пирамиды имеют координаты: А (0; 0; 0), B (2; 2 Осевое сечение сферы есть окружность; 0), C (4; 0; 0).

Обозначив через х, у, z координаты вершины S пирамиды, найдём их из условий: AS = BS = Осевое сечение сферы есть окружность, CS = 3 .

AS 2 = x 2 + y 2 + z 2 = 19,
ВS 2 = ( x – 2) 2 + ( y – 2 Осевое сечение сферы есть окружность) 2 + z 2 = 19,
C S 2 = ( x – 4) 2 + y 2 + z 2 = 9.

Решая систему уравнений

Осевое сечение сферы есть окружностьx 2 + y 2 + z 2 = 19, ( x – 2) 2 + ( y – 2 Осевое сечение сферы есть окружность) 2 + z 2 = 19, ( x – 4) 2 + y 2 + z 2 = 9,

находим: х = Осевое сечение сферы есть окружность, у = Осевое сечение сферы есть окружность, z = Осевое сечение сферы есть окружность.

Осевое сечение сферы есть окружность

Таким образом, вершина S имеет следующие координаты:

S Осевое сечение сферы есть окружность.

Пусть центр O сферы имеет координаты a, b, с, а её радиус равен R. Так как сфера описана около пирамиды SABC, то OA 2 = OB 2 = OC 2 = OS 2 = R 2 . Это соотношение в координатном виде равносильно системе уравнений

Осевое сечение сферы есть окружностьa 2 + b 2 + c 2 = R 2 , ( a – 2) 2 + ( b – 2 Осевое сечение сферы есть окружность) 2 + c 2 = R 2 , Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность= R 2 , ( a – 4) 2 + b 2 + c 2 = R 2 .

Вычитая из первого уравнения четвёртое, получаем a = 2, после чего, вычитая из первого уравнения второе, получаем b = Осевое сечение сферы есть окружность.

После вычитания третьего уравнения системы из первого её уравнения получаем:

Осевое сечение сферы есть окружность= 0.

Подставив в это уравнение вместо a и b найденные их значения, получаем с = Осевое сечение сферы есть окружность. Отсюда: R 2 = a 2 + b 2 + c 2 = 4 + Осевое сечение сферы есть окружность+ Осевое сечение сферы есть окружность= Осевое сечение сферы есть окружность. Тогда искомая площадь Q сферы равна:

Q = 4 π R 2 = Осевое сечение сферы есть окружностьπ .

Осевое сечение сферы есть окружность

Ответ: Осевое сечение сферы есть окружностьπ (кв. ед.).

19.8. Объёмы шара и его частей

Осевое сечение сферы есть окружность

Рассмотрим фигуру, образованную вращением равнобедренного прямоугольного треугольника с гипотенузой 2 R вокруг прямой, проходящей через вершину прямого угла параллельно гипотенузе (рис. 218, а ). Объём этой фигуры равен разности объёма цилиндра с высотой 2 R , радиусом основания R и удвоенного объёма конуса высоты R , радиуса основания R :

V = π • R 2 • 2 R – 2 • Осевое сечение сферы есть окружностьπ • R 2 • R = Осевое сечение сферы есть окружностьπ • R 3 . (*)

Шар радиуса R (рис. 218, б ) и образованную выше фигуру вращения расположим между двумя параллельными плоскостями, расстояние между которыми равно 2 R . Шар при этом будет касаться каждой из данных плоскостей, а фигуру вращения расположим так, чтобы её ось вращения была перпендикулярна этим плоскостям (см. рис. 218). (Плоскость, которая содержит верхнее основание цилиндра и касается сферы в точке N , на рисунке не изображена.)

Будем пересекать наши фигуры плоскостями, параллельными данным плоскостям и удалёнными от центра шара на расстояние x (0 ⩽ x ⩽ R ).

При х = 0 площади сечений обеих фигур равны π • R 2 ; при х = R площади сечений равны нулю. В остальных случаях площадь сечения шара равна π • ( Осевое сечение сферы есть окружность) 2 = π • ( R 2 – x 2 ), а площадь сечения другой фигуры (ею является кольцо) равна π • R 2 – π • x 2 . Следовательно, площади равноудалённых от центра шара сечений рассматриваемых фигур равны (относятся, как 1 : 1). Поэтому на основании принципа Кавальери равны и объёмы этих тел. Тогда на основании (*):

V шара = Осевое сечение сферы есть окружность• π • R 3 ,

гдe R — радиус шара.

Осевое сечение сферы есть окружность

Для получения объёма шарового сегмента высоты h рассмотрим предыдущую ситуацию для R – h ⩽ x ⩽ R (при h R ) (рис. 218, 219). Применяя принцип Кавальери, получим: объём шарового сегмента равен разности объёма цилиндра высоты h и радиуса основания R и объёма усечённого конуса высоты h и радиусов оснований R и R – h , т. е.

V = π • h • R 2 – Осевое сечение сферы есть окружностьπ • h • ( R 2 + R • ( R – h ) + ( R – h ) 2 ) =
= Осевое сечение сферы есть окружностьπ • h 2 • (3 R – h ) .

При h > R объём шарового сегмента можно найти как разность объёма шара и объёма шарового сегмента высоты 2 R – h (рис. 220): V = Осевое сечение сферы есть окружностьπ • R 3 – Осевое сечение сферы есть окружность• π • (2 R – h ) 2 • (3 R – (2 R – h )) = Осевое сечение сферы есть окружностьπ • h 2 (3 R – h ) , т. е. получаем ту же самую формулу. Подставляя в эту формулу h = R , получим V = Осевое сечение сферы есть окружностьπ • R 2 (3 R – R ) = Осевое сечение сферы есть окружностьπ • R 3 , что соответствует объёму полушара.

Осевое сечение сферы есть окружность

Мы показали, что в шаре радиуса R объём любого шарового сегмента высоты h может быть вычислен по формуле:

V шар. сегм = Осевое сечение сферы есть окружностьπ • h 2 • (3 R – h ) ,

или в другом виде

V шар. сегм = π • h 2 • Осевое сечение сферы есть окружность.

🌟 Видео

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать

11 класс, 27 урок, Сечения цилиндрической поверхности

Сечение шараСкачать

Сечение шара

Сфера. Урок 9. Геометрия 11 классСкачать

Сфера. Урок 9. Геометрия 11 класс

Геометрия 11 класс (Урок№8 - Сфера и шар.)Скачать

Геометрия 11 класс (Урок№8 - Сфера и шар.)

МАТЕМАТИКА 6 класс: Шар и сфера | ВидеоурокСкачать

МАТЕМАТИКА 6 класс: Шар и сфера | Видеоурок

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферыСкачать

Геометрия 11 класс: Сфера и шар. Уравнение сферы. Площадь сферы

Объем шара. Практическая часть. 11 класс.Скачать

Объем шара. Практическая часть. 11 класс.

СФЕРА с вырезомСкачать

СФЕРА с вырезом

Построение недостающих проекции сквозного отверстия в сфереСкачать

Построение недостающих проекции сквозного отверстия в сфере

Сфера и шарСкачать

Сфера и шар

Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей

11 класс, 37 урок, Объем шараСкачать

11 класс, 37 урок, Объем шара

11 класс, 26 урок, Сфера, вписанная в коническую поверхностьСкачать

11 класс, 26 урок, Сфера, вписанная в коническую поверхность

11 класс. Геометрия. Сфера и шар. Объем шара и площадь поверхности. 05.05.2020.Скачать

11 класс. Геометрия. Сфера и шар. Объем шара и площадь поверхности. 05.05.2020.

№589. Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметромСкачать

№589. Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром
Поделиться или сохранить к себе: