Ортогональная проекция прямоугольный треугольник

Ортогональное проецирование — определение и вычисление с примерами решения

Ортогональное проецирование:

Параллельное проецирование, направление которого перпендикулярно плоскости проекции, называется ортогональным проецированием. Проекция фигуры, образующаяся при ортогональном проецировании, называется ортогональной проекцией, или просто проекцией этой фигуры.

Ортогональная проекция прямоугольный треугольник

Поскольку ортогональное проецирование является особым видом параллельного проецирования, то для него выполняются все свойства последнего. Ортогональной проекцией прямой Ортогональная проекция прямоугольный треугольник

Отметим, что прямые, перпендикулярные одной из параллельных плоскостей, перпендикулярны и остальным, поэтому ортогональное проецирование на одну из таких плоскостей будет ортогональным и на остальные плоскости. Очевидно, что ортогональные проекции фигуры на параллельные плоскости равны между собой.

Ортогональное проецирование также имеет только ему присущие свойства. Одно из них выражает теорема о площади ортогональной проекции многоугольника.

Площадь ортогональной проекции

Теорема 5

Площадь ортогональной проекции произвольного многоугольника на плоскость равна произведению площади самого многоугольника на косинус угла между плоскостью многоугольника и плоскостью проекции.

Ортогональная проекция прямоугольный треугольник

Как пример многоугольника возьмем Ортогональная проекция прямоугольный треугольник(рис. 6.41). Проекцией Ортогональная проекция прямоугольный треугольникна плоскость Ортогональная проекция прямоугольный треугольникявляется Ортогональная проекция прямоугольный треугольник. Проведем высоту Ортогональная проекция прямоугольный треугольниктреугольника Ортогональная проекция прямоугольный треугольник. По теореме
о трех перпендикулярах Ортогональная проекция прямоугольный треугольник— высота Ортогональная проекция прямоугольный треугольник. Угол Ортогональная проекция прямоугольный треугольник— угол между плоскостью Ортогональная проекция прямоугольный треугольники плоскостью проекции. Пусть Ортогональная проекция прямоугольный треугольник. Тогда

Ортогональная проекция прямоугольный треугольник

Учитывая, что Ортогональная проекция прямоугольный треугольникпрямоугольный Ортогональная проекция прямоугольный треугольник, имеем:Ортогональная проекция прямоугольный треугольник. Поэтому

Ортогональная проекция прямоугольный треугольник

Итак, Ортогональная проекция прямоугольный треугольник. Теорема доказана.

Чтобы доказать теорему для произвольного многоугольника, его разбивают на треугольники. Тогда для каждого треугольника и его проекции можно записать равенство

Ортогональная проекция прямоугольный треугольник

где Ортогональная проекция прямоугольный треугольникпоскольку угол между плоскостями этих треугольников и плоскостью их проекций будет один и тот же. Все эти равенства сложим почленно:

Ортогональная проекция прямоугольный треугольник

Получим в левой части равенства площадь проекции многоугольника, а в правой — площадь самого многоугольника, умноженную на косинус угла между их плоскостями. Отсюда

Ортогональная проекция прямоугольный треугольник

Т.е. и для этого случая теорема истинна.

Пример:

Ортогональной проекцией треугольника является треугольник со сторонами 13 см, 14 см и 15 см. Плоскость треугольника образует с плоскостью проекции угол 60°. Вычислите площадь данного треугольника.

Воспользуемся рисунком 6.41. Известно, что площадь проекции треугольника вычисляют по формуле:

Ортогональная проекция прямоугольный треугольник

где Ортогональная проекция прямоугольный треугольник— угол между плоскостью треугольника и плоскостью проекции.
По формуле Герона найдем площадь Ортогональная проекция прямоугольный треугольник:

Ортогональная проекция прямоугольный треугольник

где Ортогональная проекция прямоугольный треугольник— полупериметр треугольника, Ортогональная проекция прямоугольный треугольник— его стороны.
Ортогональная проекция прямоугольный треугольникОртогональная проекция прямоугольный треугольник
Тогда Ортогональная проекция прямоугольный треугольник

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Декартовы координаты на плоскости
  • Декартовы координаты в пространстве
  • Геометрические преобразования в геометрии
  • Планиметрия — формулы, определение и вычисление
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Ортогональная проекция и ортогональная составляющая. ТемаСкачать

Ортогональная проекция и ортогональная составляющая. Тема

Проекции прямоугольного треугольника

Построить Проекции прямоугольного треугольника ABC, если его катет AB(A`B`, . ) принадежит горизонтальной прямой h(h`, h»), катеты равны между собой, а вершина C принадлежит прямой m(m`, . ) и zC больше zB

Ортогональная проекция прямоугольный треугольник

AB — один из катетов прямоугольного треугольника, представляет собой прямую уровня — горизонтальную прямую так как A»B» || Ox. На горизонтальную плоскость проекции он проецируется в натуральную величину. Выполняем построение BC: — прямой угол при вершине B проецируется без искажения на горизонтальную плоскость проекции, следовательно здесь можно провести направление для катета BC; — в пересечении направления катета BC с m` получим C`. По способу прямоугольного треугольника определяем Δz = zC-zB: — из центра O описываем дугу радиусом R=|AB|=A`B` до пересечения с направлением перпендикуляра в точке C0; — определяем разницу аппликат катета BC — Δz. Откладываем Δz на фронтальной плоскости проекций от точки B» и по линии проекционной связи находим точку C».

Построить проекции прямоугольного равнобедренного треугольника ABC, катет которого BC лежит на прямой MN. A(60,40,10), M(75,10,30); N(15,25,30).

Ортогональная проекция прямоугольный треугольник

Так как zM=zN делаем вывод, что отрезок MN — горизонтальная прямая и мы можем опустить из точки A перпендикуляр на него. В пересечении которого с M`N` находим B` и затем по линии проекционной связи B». Находим натуральную величину катета AB способом прямоугольного треугольника:
— через точку A проводим перпендикуляр к AB и на нем откладываем ΔzAB и находим A0 и BA0; — откладываем на отрезке MN катет BC, описывая дугу радиуса R=/AB/ и отмечая точку C` и по линии проекционной связи C»; — вершины A`B`C` и A»B»C» соединяем прямыми линиями, получая проекции искомого треугольника.

Даны проекции равнобедренного прямоугольного треугольника ABC (смотри задачу №1).
Построить фронтальную и горизонтальную проекции параллелограмма ABCD

Ортогональная проекция прямоугольный треугольник

Построение параллелограмма заключается: — в проведении BD // AC; — в проведении CD // AB.

Даны проекции равнобедренного прямоугольного треугольника ABC (смотри задачу №1).
Построить фронтальную и горизонтальную проекции квадрата ABCD

Ортогональная проекция прямоугольный треугольник

Построение квадрата заключается: — в проведении AD // BC; — в проведении CD // AB.

Видео:Урок 17. Площадь ортогональной проекции Задание 14 ЕГЭ по математике. Стереометрия с нуля.Скачать

Урок 17. Площадь ортогональной проекции Задание 14 ЕГЭ по математике. Стереометрия с нуля.

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Видео:Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Ортогональная проекция прямоугольный треугольник

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Видео:Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E»1 и F»1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Ортогональная проекция прямоугольный треугольник

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Видео:Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M»1. При этом исходим из того, что M» в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N»1 и M»1 искомым отрезком. На рисунке он выделен красным цветом.

Ортогональная проекция прямоугольный треугольник

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

📹 Видео

Площадь ортогональной проекцииСкачать

Площадь ортогональной проекции

Площадь ортогональной проекции многоугольникаСкачать

Площадь ортогональной проекции многоугольника

Площадь ортогональной проекцииСкачать

Площадь ортогональной проекции

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

134 Равнобедренный прямоугольный треугольник, проекция которого подобна ему, но меньшей площадиСкачать

134 Равнобедренный прямоугольный треугольник, проекция которого подобна ему, но меньшей площади

Ортогональная проекция точкиСкачать

Ортогональная проекция точки

Ортогональное проектирование Теорема о трех перпендикулярахСкачать

Ортогональное проектирование Теорема о трех перпендикулярах

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольникеСкачать

8 класс, 26 урок, Пропорциональные отрезки в прямоугольном треугольнике

Проецирование прямой общего положенияСкачать

Проецирование прямой общего положения

#Урок2 Геометрия Прямоугольный треугольник. Проекция.Тригонометрические элементы в прям.треугольникеСкачать

#Урок2 Геометрия Прямоугольный треугольник. Проекция.Тригонометрические элементы в прям.треугольнике

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.Скачать

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Проекции точки,отрезка,плоскости в ортогональном проецировании.Введение(Часть2.ПРОЕКЦИОННОЕЧЕРЧЕНИЕ)Скачать

Проекции точки,отрезка,плоскости в ортогональном проецировании.Введение(Часть2.ПРОЕКЦИОННОЕЧЕРЧЕНИЕ)

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

Лекция 1. Точка на прямой. Метод прямоугольного треугольника
Поделиться или сохранить к себе: