Дата | 13.04.2019 |
өлшемі | 109 Kb. |
#96226 | |
түрі | Задача |
- Бұл бет үшін навигация:
- Исходные данные: Гипотенуза c Катет а Расчетные данные
- Составим геометрическую модель: с Этап 2. Разработка компьютерной модели.
- Вывод
- Этап 3. Анализ результатов моделирования. Вывод.
Эксперимент 3: | Шаг изменения первого катета 1см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3 | 6 |
10 | 7 | 24,9 |
12 | 8 | 35,7 |
Вывод: При увеличении длины гипотенузы, мы наблюдаем увеличении катета, и максимальной площади.
Эксперимент 4.
Определим максимальное значение при длине шага Δb=0,3.
Изменим значение в ячейке «B5» с 1 на 0,3 и проверим результаты для 5, 10 и 12 см.
Сравним полученные результаты
Эксперимент 3: | Шаг изменения первого катета 1см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3 | 6 |
10 | 7 | 24,9 |
12 | 8 | 35,7 |
Эксперимент 4: | Шаг изменения первого катета 0,3см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3,6 | 6,25 |
10 | 7,2 | 24,98 |
12 | 8,4 | 35,99 |
Вывод: При уменьшении длины шага, мы получаем более точные значения максимальной площади.
Эксперимент 5.
Теперь нам нужно подобрать длину гипотенузы для заданных площадей: 54 см 2 , 96 см 2 и
150 см 2 . После проведения подбора мы получим следующие значения:
Эксперимент 5: | Подбор длины гипотенузы Длина гипотенузы | один из катетов | площадь | |
15 | 9 | 54 | ||
20 | 12 | 96 | ||
25 | 15 | 150 |
Вывод: С помощью данной модели, можно не только определить максимальную площадь, если мы знаем длину катета и гипотенузы, но и вычислить длину катета по заданному значению площади.
Этап 3. Анализ результатов моделирования.
Вывод. В результате проведения эксперимента, мы научились составлять математическую и геометрическую модель, для расчета площади прямоугольного треугольника с помощью табличного процессора. Также мы научились анализировать результаты и проводить расчеты с большей точностью.
- Максимальная площадь прямоугольного треугольника
- Площадь прямоугольного треугольника
- Основные определения
- Формула для нахождения площади прямоугольного треугольника через катеты
- Формула для нахождения площади прямоугольного треугольника через гипотенузу
- Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол
- Формулы нахождения площади прямоугольного треугольника через катет и угол
- Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу
- Задача 2 «Определение максимальной площади треугольника»
- Треугольник с наибольшею площадью
- Как найти площадь треугольника
- По формуле Герона
- Через основание и высоту
- Через две стороны и угол
- Через сторону и два прилежащих угла
- Площадь прямоугольного треугольника
- Площадь равнобедренного треугольника через стороны
- Площадь равнобедренного треугольника через основание и угол
- Площадь равностороннего треугольника через стороны
- Площадь равностороннего треугольника через высоту
- Площадь равностороннего треугольника через радиус вписанной окружности
- Площадь равностороннего треугольника через радиус описанной окружности
- Площадь треугольника через радиус описанной окружности и три стороны
- Площадь треугольника через радиус вписанной окружности и три стороны
- 🌟 Видео
Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать
Максимальная площадь прямоугольного треугольника
Видео:Как найти площадь треугольника без формулы?Скачать
Площадь прямоугольного треугольника
О чем эта статья:
площадь, 8 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать
Основные определения
Прямоугольный треугольник — это треугольник, в котором один угол прямой, то есть равен 90˚.
Гипотенуза — это сторона, противолежащая прямому углу.
Катеты — это стороны, прилежащие к прямому углу.
Чтобы найти площадь прямоугольного треугольника, можно применить любую формулу нахождения площади треугольника — их несколько.
Видео:Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадьСкачать
Формула для нахождения площади прямоугольного треугольника через катеты
Чтобы найти площадь, нужно вывести формулу:
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию.
Так как в прямоугольном треугольнике катеты перпендикулярны, то один катет — это высота, проведенная ко второму катету.
Отсюда следует, что площадь прямоугольного треугольника равна половине произведения его катетов.
Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через катеты.
S = 1/2 (a × b), где a и b — катеты
Видео:✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать
Формула для нахождения площади прямоугольного треугольника через гипотенузу
Площадь прямоугольного треугольника равна половине произведения гипотенузы на высоту, проведенную к гипотенузе.
где с — гипотенуза,
Используйте эту формулу, чтобы найти площадь прямоугольного треугольника через гипотенузу.
Видео:Максимальная площадь треугольника.Скачать
Формула для нахождения площади прямоугольного треугольника через гипотенузу и острый угол
α, β — острые углы
Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
Формулы нахождения площади прямоугольного треугольника через катет и угол
α, β — острые углы
Видео:8 класс, 14 урок, Площадь треугольникаСкачать
Формулы нахождения площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу
Радиус вписанной окружности выражается через катеты и гипотенузу по формуле:
S прямоугольного треугольника = r (r + c) = c1 × c2
r — радиус вписанной окружности
C1 и С2 — отрезки, полученные делением гипотенузы на две части точкой касания с окружностью
Уверены, что во всем разобрались? Закрепите знания на курсах обучения математике в онлайн-школе Skysmart!
Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать
Задача 2 «Определение максимальной площади треугольника»
Дата | 13.04.2019 |
өлшемі | 109 Kb. |
#96226 | |
түрі | Задача |
- Бұл бет үшін навигация:
- Исходные данные: Гипотенуза c Катет а Расчетные данные
- Составим геометрическую модель: с Этап 2. Разработка компьютерной модели.
- Вывод
- Этап 3. Анализ результатов моделирования. Вывод.
Эксперимент 3: | Шаг изменения первого катета 1см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3 | 6 |
10 | 7 | 24,9 |
12 | 8 | 35,7 |
Вывод: При увеличении длины гипотенузы, мы наблюдаем увеличении катета, и максимальной площади.
Эксперимент 4.
Определим максимальное значение при длине шага Δb=0,3.
Изменим значение в ячейке «B5» с 1 на 0,3 и проверим результаты для 5, 10 и 12 см.
Сравним полученные результаты
Эксперимент 3: | Шаг изменения первого катета 1см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3 | 6 |
10 | 7 | 24,9 |
12 | 8 | 35,7 |
Эксперимент 4: | Шаг изменения первого катета 0,3см | |
Длина гипотенузы | один из катетов | площадь |
5 | 3,6 | 6,25 |
10 | 7,2 | 24,98 |
12 | 8,4 | 35,99 |
Вывод: При уменьшении длины шага, мы получаем более точные значения максимальной площади.
Эксперимент 5.
Теперь нам нужно подобрать длину гипотенузы для заданных площадей: 54 см 2 , 96 см 2 и
150 см 2 . После проведения подбора мы получим следующие значения:
Эксперимент 5: | Подбор длины гипотенузы Длина гипотенузы | один из катетов | площадь | |
15 | 9 | 54 | ||
20 | 12 | 96 | ||
25 | 15 | 150 |
Вывод: С помощью данной модели, можно не только определить максимальную площадь, если мы знаем длину катета и гипотенузы, но и вычислить длину катета по заданному значению площади.
Этап 3. Анализ результатов моделирования.
Вывод. В результате проведения эксперимента, мы научились составлять математическую и геометрическую модель, для расчета площади прямоугольного треугольника с помощью табличного процессора. Также мы научились анализировать результаты и проводить расчеты с большей точностью.
Видео:Площадь по теореме Герона #математика #площадь #треугольник #герона #егэ #огэ #найтиплощадь #теоремаСкачать
Треугольник с наибольшею площадью
Какую форму нужно придать треугольнику, чтобы при данной сумме его сторон он имел наибольшую площадь?
Мы уже заметили раньше (см. «Участки другой формы»), что этим свойством обладает треугольник равносторонний. Но как это доказать?
Площадь S треугольника со сторонами а, Ь, с и периметром а + b + с = 2р выражается, как известно из курса геометрии,так:
откуда
Площадь S треугольника будет наибольшей тогда же, когда станет наибольшей величиной и ее квадрат S 2 , S 2
или выражение —, где р, полупериметр, есть, согласно Р
условию, величина неизменная. Но так как обе части равенства получают наибольшее значение одновременно, то вопрос сводится к тому, при каком условии произведение
становится наибольшим. Заметив, что сумма этих трех множителей есть величина постоянная,
мы заключаем, что произведение их достигнет наибольшей величины тогда, когда множители станут равны, т.е. когда осуществится равенство
откуда
Итак, треугольник имеет при данном периметре наибольшую площадь тогда, когда стороны его равны между собою.
Видео:Максимальная площадь треугольникаСкачать
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
Площадь прямоугольного треугольника
Прямоугольный треугольник — треугольник у которого один из углов прямой, т.е. равен 90°.
Формула нахождения площади прямоугольного треугольника через катеты:
Площадь равнобедренного треугольника через стороны
Равнобедренный треугольник — треугольник, в котором две стороны равны. А значит, равны и два угла.
Формула нахождения площади равнобедренного треугольника через две стороны:
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
Площадь равностороннего треугольника через стороны
Равносторонний треугольник — треугольник, в котором все стороны равны, а каждый угол равен 60°.
Формула нахождения площади равностороннего треугольника через сторону:
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
🌟 Видео
Задача, которую исключили из экзамена в АмерикеСкачать
Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать
Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать
Площадь треугольника. Формула площади. Геометрия 8 класс.Скачать
Найти площадь треугольника АВС. Задачи по рисункамСкачать
Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать
Лайфхак! Площади всех фигур #огэ #математика #shortsСкачать
Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать
Как найти площадь этого треугольника, не зная формулы?Скачать