Описанная окружность обратная теорема

Описанная окружность

Окружность описанная около многоугольника — это окружность, на которой лежат все вершины многоугольника. Вписанный в окружность многоугольник — это многоугольник, все вершины которого лежат на окружности. На рисунке 1 четырехугольник АВСD вписан в окружность с центром О, а четырехугольник АЕСD не является вписанным в эту окружность, так как вершина Е не лежит на окружности.

Описанная окружность обратная теорема

Теорема

Около любого треугольника можно описать окружность.

Доказательство

Дано: произвольный Описанная окружность обратная теоремаАВС.

Доказать: около Описанная окружность обратная теоремаАВС можно описать окружность.

Доказательство:

1. Проведем серединные перпендикуляры к сторонам Описанная окружность обратная теоремаАВС, которые пересекутся в точке О (по свойству серединных перпендикуляров треугольника). Соединим точку О с точками А, В и С (Рис. 2).

Описанная окружность обратная теорема

Точка О равноудалена от вершин Описанная окружность обратная теоремаАВС (по теореме о серединном перпендикуляре), поэтому ОА = ОВ = ОС. Следовательно, окружность с центром О радиуса ОА проходит через все три вершины треугольника, значит, является описанной около Описанная окружность обратная теоремаАВС. Теорема доказана.

Замечание 1

Около треугольника можно описать только одну окружность.

Доказательство

Предположим, что около треугольника можно описать две окружности. Тогда центр каждой из них равноудален от его вершин и поэтому совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают, т.е. около треугольника можно описать только одну окружность. Что и требовалось доказать.

Замечание 2

Около четырехугольника не всегда можно описать окружность.

Доказательство

Рассмотрим, например, ромб, не являющийся квадратом. Такой ромб можно «поместить» в окружность так, что две его вершины будут лежать на этой окружности (Рис. 3), но нельзя «поместить» ромб в окружность так, чтобы все его вершины лежали на окружности, т.к. диаметр окружности, равный одной из диагоналей ромба, будет больше (меньше) второй диагонали, т.е. нельзя описать окружность. Что и требовалось доказать.

Описанная окружность обратная теорема

Если же около четырехугольника можно описать окружность, то его углы обладают следующим замечательным свойством:

В любом вписанном четырехугольнике сумма противоположных углов равна 180 0 .

Доказательство

Рассмотрим четырехугольник АВСD, вписанный в окружность (Рис. 4).

Описанная окружность обратная теорема

Углы В и Dвписанные, тогда по теореме о вписанном угле: Описанная окружность обратная теоремаВ = Описанная окружность обратная теоремаОписанная окружность обратная теоремаАDС, Описанная окружность обратная теоремаD = Описанная окружность обратная теоремаОписанная окружность обратная теоремаАВС, откуда следует Описанная окружность обратная теоремаВ + Описанная окружность обратная теоремаD = Описанная окружность обратная теоремаОписанная окружность обратная теоремаАDС + Описанная окружность обратная теоремаОписанная окружность обратная теоремаАВС = Описанная окружность обратная теорема(Описанная окружность обратная теоремаАDС + Описанная окружность обратная теоремаАВС). Дуги АDС и АВС вместе составляют окружность, градусная мера которой равна 360 0 , т.е. Описанная окружность обратная теоремаАDС + Описанная окружность обратная теоремаАВС = 360 0 , тогда Описанная окружность обратная теоремаВ + Описанная окружность обратная теоремаD = Описанная окружность обратная теоремаОписанная окружность обратная теорема360 0 = 180 0 . Что и требовалось доказать.

Верно и обратное утверждение:

Если сумма противоположных углов четырехугольника равна 180 0 , то около него можно описать окружность.

Доказательство

Дано: четырехугольник АВСD, Описанная окружность обратная теоремаBАD + Описанная окружность обратная теоремаBСD = 180 0 .

Доказать: около АВСD можно описать окружность.

Доказательство:

Проведем окружность через три вершины четырехугольника: А, В и D (Рис. 5), — и докажем, что она проходит также через вершину С, т.е. является описанной около четырехугольника АВСD.

Описанная окружность обратная теорема

Предположим, что это не так. Тогда вершина С лежит либо внутри круга, либо вне его.

Рассмотрим первый случай, когда точка С лежит внутри круга (Рис. 6).

Описанная окружность обратная теорема

Описанная окружность обратная теоремаВСDвнешний угол Описанная окружность обратная теоремаСFD, следовательно, Описанная окружность обратная теоремаBСD = Описанная окружность обратная теоремаВFD + Описанная окружность обратная теоремаFDE. (1)

Углы ВFD и FDEвписанные. По теореме о вписанном угле Описанная окружность обратная теоремаВFD = Описанная окружность обратная теоремаОписанная окружность обратная теоремаВАD и Описанная окружность обратная теоремаFDE = Описанная окружность обратная теоремаОписанная окружность обратная теоремаЕF, тогда, подставляя данные равенства в (1), получим: Описанная окружность обратная теоремаBСD = Описанная окружность обратная теоремаОписанная окружность обратная теоремаВАD + Описанная окружность обратная теоремаОписанная окружность обратная теоремаЕF = Описанная окружность обратная теорема(Описанная окружность обратная теоремаВАD + Описанная окружность обратная теоремаЕF), следовательно, Описанная окружность обратная теоремаВСDОписанная окружность обратная теоремаОписанная окружность обратная теоремаОписанная окружность обратная теоремаВАD.

Описанная окружность обратная теоремаBАD вписанный, тогда по теореме о вписанном угле Описанная окружность обратная теоремаBАD = Описанная окружность обратная теоремаОписанная окружность обратная теоремаВЕD, тогда Описанная окружность обратная теоремаBАD + Описанная окружность обратная теоремаBСDОписанная окружность обратная теоремаОписанная окружность обратная теорема(Описанная окружность обратная теоремаВЕD + Описанная окружность обратная теоремаВАD).

Дуги ВЕD и ВАD вместе составляют окружность, градусная мера которой равна 360 0 , т.е. Описанная окружность обратная теоремаВЕD + Описанная окружность обратная теоремаВАD = 360 0 , тогда Описанная окружность обратная теоремаBАD + Описанная окружность обратная теоремаBСDОписанная окружность обратная теоремаОписанная окружность обратная теоремаОписанная окружность обратная теорема360 0 = 180 0 .

Итак, мы получили, что Описанная окружность обратная теоремаBАD + Описанная окружность обратная теоремаBСDОписанная окружность обратная теорема180 0 . Но это противоречит условию Описанная окружность обратная теоремаBАD + Описанная окружность обратная теоремаBСD =180 0 , и, значит, наше предположение ошибочно, т.е. точка С лежит на окружности, значит, около четырехугольника АВСD можно описать окружность.

Рассмотрим второй случай, когда точка С лежит вне круга (Рис. 7).

Описанная окружность обратная теорема

По теореме о сумме углов треугольника в Описанная окружность обратная теоремаВСF: Описанная окружность обратная теоремаС + Описанная окружность обратная теоремаВ + Описанная окружность обратная теоремаF = 180 0 , откуда Описанная окружность обратная теоремаС = 180 0 — ( Описанная окружность обратная теоремаВ + Описанная окружность обратная теоремаF). (2)

Описанная окружность обратная теоремаВ вписанный, тогда по теореме о вписанном угле Описанная окружность обратная теоремаВ = Описанная окружность обратная теоремаОписанная окружность обратная теоремаЕF. (3)

Описанная окружность обратная теоремаF и Описанная окружность обратная теоремаВFD смежные, поэтому Описанная окружность обратная теоремаF + Описанная окружность обратная теоремаВFD = 180 0 , откуда Описанная окружность обратная теоремаF = 180 0 — Описанная окружность обратная теоремаВFD = 180 0 — Описанная окружность обратная теоремаОписанная окружность обратная теоремаВАD. (4)

Подставим (3) и (4) в (2), получим:

Описанная окружность обратная теоремаС = 180 0 — (Описанная окружность обратная теоремаОписанная окружность обратная теоремаЕF + 180 0 — Описанная окружность обратная теоремаОписанная окружность обратная теоремаВАD) = 180 0 — Описанная окружность обратная теоремаОписанная окружность обратная теоремаЕF — 180 0 + Описанная окружность обратная теоремаОписанная окружность обратная теоремаВАD = Описанная окружность обратная теорема(Описанная окружность обратная теоремаВАDОписанная окружность обратная теоремаЕF), следовательно, Описанная окружность обратная теоремаСОписанная окружность обратная теоремаОписанная окружность обратная теоремаОписанная окружность обратная теоремаВАD.

Описанная окружность обратная теоремаА вписанный, тогда по теореме о вписанном угле Описанная окружность обратная теоремаА = Описанная окружность обратная теоремаОписанная окружность обратная теоремаВЕD, тогда Описанная окружность обратная теоремаА + Описанная окружность обратная теоремаСОписанная окружность обратная теоремаОписанная окружность обратная теорема(Описанная окружность обратная теоремаВЕD + Описанная окружность обратная теоремаВАD). Но это противоречит условию Описанная окружность обратная теоремаА + Описанная окружность обратная теоремаС =180 0 , и, значит, наше предположение ошибочно, т.е. точка С лежит на окружности, значит, около четырехугольника АВСD можно описать окружность. Что и требовалось доказать.

Примечание:

Окружность всегда можно описать:

Поделись с друзьями в социальных сетях:

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Описанная окружность обратная теоремаСерединный перпендикуляр к отрезку
Описанная окружность обратная теоремаОкружность описанная около треугольника
Описанная окружность обратная теоремаСвойства описанной около треугольника окружности. Теорема синусов
Описанная окружность обратная теоремаДоказательства теорем о свойствах описанной около треугольника окружности

Описанная окружность обратная теорема

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Описанная окружность обратная теорема

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Описанная окружность обратная теорема

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Описанная окружность обратная теорема

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Описанная окружность обратная теорема

Описанная окружность обратная теорема

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Описанная окружность обратная теорема

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Описанная окружность обратная теорема

Описанная окружность обратная теорема

Полученное противоречие и завершает доказательство теоремы 2

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Описанная окружность обратная теорема

Видео:8 класс, 17 урок, Теорема, обратная теореме ПифагораСкачать

8 класс, 17 урок, Теорема, обратная теореме Пифагора

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Описанная окружность обратная теорема,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Описанная окружность обратная теорема

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Описанная окружность обратная теоремаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОписанная окружность обратная теоремаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОписанная окружность обратная теоремаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОписанная окружность обратная теоремаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовОписанная окружность обратная теорема
Площадь треугольникаОписанная окружность обратная теорема
Радиус описанной окружностиОписанная окружность обратная теорема
Серединные перпендикуляры к сторонам треугольника
Описанная окружность обратная теорема

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаОписанная окружность обратная теорема

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиОписанная окружность обратная теорема

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиОписанная окружность обратная теорема

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиОписанная окружность обратная теорема

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовОписанная окружность обратная теорема

Для любого треугольника справедливы равенства (теорема синусов):

Описанная окружность обратная теорема,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаОписанная окружность обратная теорема

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиОписанная окружность обратная теорема

Для любого треугольника справедливо равенство:

Описанная окружность обратная теорема

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Описанная окружность обратная теорема

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Описанная окружность обратная теорема

Описанная окружность обратная теорема.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Описанная окружность обратная теорема

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Окружность. Основные теоремы

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:

Описанная окружность обратная теорема

Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .

Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.

Описанная окружность обратная теорема

Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).

2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).

3) прямая (c) не имеет общих точек с окружностью (рис. 5).

Описанная окружность обратная теорема

Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки (K) две касательные (KA) и (KB) :

Описанная окружность обратная теорема

Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .

Следствие

Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:

Описанная окружность обратная теорема

Покажем, что (angle DMB = dfrac(buildrelsmileover — buildrelsmileover)) .

(angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = fracbuildrelsmileover — fracbuildrelsmileover = frac(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]

Доказательство

(angle BMA = angle CMD) как вертикальные.

Описанная окружность обратная теорема

Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .

Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .

Описанная окружность обратная теорема

Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .

Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .

Описанная окружность обратная теорема

(triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .

2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.

Описанная окружность обратная теорема

Доказательство

1) Пусть (AN=NB) . Докажем, что (OQperp AB) .

Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .

2) Пусть (OQperp AB) . Докажем, что (AN=NB) .

Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды (AB) и (CD) пересекаются в точке (E) .

Описанная окружность обратная теорема

Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).

Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .

Описанная окружность обратная теорема

Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.

Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .

Следствие

Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :

🔍 Видео

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 классСкачать

Урок по теме ОПИСАННАЯ ОКРУЖНОСТЬ 8 класс

Теорема, обратная теореме Уоллеса-СимсонаСкачать

Теорема, обратная теореме Уоллеса-Симсона

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Описанная окружностьСкачать

Описанная окружность

ОПИСАННАЯ и ВПИСАННАЯ окружности. §21 геометрия 7 классСкачать

ОПИСАННАЯ и  ВПИСАННАЯ окружности. §21 геометрия 7 класс

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника
Поделиться или сохранить к себе: