Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что отрезки AB и IJ перпендикулярны.
Точка I равноудалена от A и B, поэтому она лежит на серединном перпендикуляре к отрезку AB. То же можно сказать и о J . Значит, IJ — серединный перпендикуляр к AB.
Критерии оценивания выполнения задания | Баллы |
---|---|
Доказательство верное, все шаги обоснованы. | 2 |
Доказательство в целом верное, но содержит неточности. | 1 |
Другие случаи, не соответствующие указанным критериям. | 0 |
Максимальный балл | 2 |
Задание 25 № 341422
Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что отрезки AB и IJ перпендикулярны.
Решение: IA и IB — радиусы окружности с центром в точке I => IA = IB => треугольник IAB — равнобедренный.
Проведем медиану IJ к стороне AB. Т.к. треугольник IAB — равнобедренный, то IJ также является высотой, проведённой AB => AB и IJ перпендикулярны, что и требовалось доказать.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
№ 14*. 1) Окружности с центрами О и О1 пересекаются в точках А и В. Докажите, что прямая АВ перпендикулярна прямой ОО1 2) Докажите, что две окружности не могут пересекаться более чем в двух точках.
1) Докажем, что АВ ⊥ ОО1.
ОА = ОВ (как радиусы),
Таким образом, ΔОАО1 = ΔОВО1 по 3-му признаку равенства треугольников, откуда ∠AOK = ∠KOB, ∠AO1K = ∠BO1K.
ОА = ОВ, следовательно, ΔАОВ — равнобедренный, ∠AOK = ∠KOB, таким образом, OK — биссектриса, которая является и высотой, т.к. ΔАОВ — равнобедренный, то есть OK ⊥ АВ.
Таким образом, АВ ⊥ ОО1.
2) Докажем, что окружности не могут пересекаться более чем в двух различных точках.
Допустим, что две окружности с центрами О и О1 пересекаются хотя бы в трех различных точках А, В, С, тогда из п. 1 АС ⊥ ОО1, АВ ⊥ ОО1, но это невозможно, так как через данную точку А можно провести одну и только одну прямую, перпендикулярную ОО1.
Таким образом, мы пришли к противоречию.
Решебник по геометрии за 7 класс (А.В. Погорелов, 2001 год),
задача №14
к главе «§ 5. Геометрические построения».
Видео:Геометрия Докажите, что если хорды AB и CD окружности пересекаются в точке M, то AM٠MB = DM٠MCСкачать
Окружность. Относительное взаимоположение окружностей.
Если две окружности имеют только одну общую точку, то говорят, что они касаются.
Если же две окружности имеют две общие точки, то говорят, что они пересекаются.
Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.
Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).
Теорема.
Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.
Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.
Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.
Следствие.
Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.
Теоремы.
1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.
2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.
Признаки различных случаев относительного положения окружностей.
Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.
Эти окружности могут находиться в следующих 5-ти относительных положениях:
1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .
2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.
3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.
4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.
5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,
d R + R1, то окружности расположены одна вне другой, не касаясь.
2. Если d = R + R1, то окружности касаются извне.
3. Если d R — R1, то окружности пересекаются.
4. Если d = R — R1, то окружности касаются изнутри.
5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.
💥 Видео
Геометрия Хорды AB и CD окружности пересекаются в точке M (см. рис.). Докажите, что угол AMC = 1/2Скачать
Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Геометрия Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополамСкачать
Теорема о числе точек пересечения двух окружностейСкачать
ОГЭ Задание 25 Две окружностиСкачать
Геометрия Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второйСкачать
ОГЭ по математике. Окружности с центрами.. Вариант 3 (25)Скачать
Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.Скачать
ОГЭ вариант-8 #25Скачать
Окружность. 7 класс.Скачать
ЕГЭ задание 16Скачать
ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать
Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
Касательные к окружности пересекаются в точке. Теорема и решение задач. Геометрия 7-8 классСкачать
№7. Две прямые пересекаются в точке М. Докажите, что все прямые, не проходящие через точкуСкачать
№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать
ЕГЭ задание 16 Взаимное расположение окружностейСкачать
№188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АССкачать