Окружность вписанная в трапецию abcd касается боковых

Окружность вписанная в трапецию abcd касается боковых

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно. Известно, что AM = 8MB и DN = 2CN.

а) Докажите, что AD = 4BC.

б) Найдите длину отрезка MN, если радиус окружности равен Окружность вписанная в трапецию abcd касается боковых

а) Пусть окружность касается оснований BC и AD в точках K и L соответственно, а ее центр находится в точке O.

Лучи AO и BO являются биссектрисами углов BAD и ABC соответственно, поэтому

Окружность вписанная в трапецию abcd касается боковых

то есть треугольник AOB прямоугольный. Аналогично, треугольник COD тоже прямоугольный. Пусть BM = x, CN = y, тогда AM = 8x, DN = 2y.

Окружность вписанная в трапецию abcd касается боковых

б) Заметим, что Окружность вписанная в трапецию abcd касается боковыхпоэтому Окружность вписанная в трапецию abcd касается боковых

Пусть прямые AB и CD пересекаются в точке P, а прямые MN и PO пересекаются в точке Q. Тогда треугольники BPC и APD подобны, поэтому AP = 4BP, AB = 3BP, BP = 3x, PN = PM = 4x. Прямая PO является серединным перпендикуляром к MN. В прямоугольном треугольнике OMP получаем:

Окружность вписанная в трапецию abcd касается боковых

Значит, Окружность вписанная в трапецию abcd касается боковых

Приведем другое решение пункта а)

Пусть окружность касается оснований BC и AD в точках K и L соответственно, ее центр находится в точке O, а BM = x, CN = y, тогда AM = 8x, DN = 2y. Поскольку точки M, K, N и L — точки касания, Окружность вписанная в трапецию abcd касается боковых Окружность вписанная в трапецию abcd касается боковых Окружность вписанная в трапецию abcd касается боковыхи Окружность вписанная в трапецию abcd касается боковыхОпустим высоты BH и CQ:

Окружность вписанная в трапецию abcd касается боковыхОкружность вписанная в трапецию abcd касается боковых

тогда по теореме Пифагора Окружность вписанная в трапецию abcd касается боковых Окружность вписанная в трапецию abcd касается боковыхПоскольку Окружность вписанная в трапецию abcd касается боковыхимеем Окружность вписанная в трапецию abcd касается боковыхоткуда Окружность вписанная в трапецию abcd касается боковых

Критерии оценивания выполнения заданияБаллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)3
Получен обоснованный ответ в пункте б)

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

2
Имеется верное доказательство утверждения пункта а)

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Содержание
  1. Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?
  2. В трапецию вписана окружность?
  3. Точка E середина боковой стороны CDMA трапеции ABCD?
  4. 45 баллов?
  5. В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС?
  6. Боковая сторона равнобедренного треугольника равна 18, основание равно 12?
  7. Боковая сторона равнобедренного треугольника равна 18, основание равно 12?
  8. В трапеции ABCD основания AD и BC равны соответственно 5 и 2?
  9. Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°?
  10. Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°?
  11. В трапецию абсд вписана окружность с центром и?
  12. В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2?
  13. Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?
  14. В трапецию вписана окружность?
  15. Точка E середина боковой стороны CDMA трапеции ABCD?
  16. 45 баллов?
  17. В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС?
  18. Боковая сторона равнобедренного треугольника равна 18, основание равно 12?
  19. Боковая сторона равнобедренного треугольника равна 18, основание равно 12?
  20. В трапеции ABCD основания AD и BC равны соответственно 5 и 2?
  21. Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°?
  22. Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°?
  23. В трапецию абсд вписана окружность с центром и?
  24. В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2?

Видео:ОГЭ ЗАДАНИЕ 16 РАДИУС ОКРУЖНОСТИ ВПИСАННОЙ В ТРАПЕЦИЮ РАВЕН 18. НАЙДИТЕ ВЫСОТУ ЭТОЙ ТРАПЕЦИИСкачать

ОГЭ ЗАДАНИЕ 16 РАДИУС ОКРУЖНОСТИ ВПИСАННОЙ В ТРАПЕЦИЮ РАВЕН 18. НАЙДИТЕ ВЫСОТУ ЭТОЙ ТРАПЕЦИИ

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?

Геометрия | 5 — 9 классы

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно.

Известно, что AM = 8MB и DN = 2CN.

Докажите, что AD = 4BC.

Окружность вписанная в трапецию abcd касается боковых

А) Пусть окружность касается основанийBCиADв точкахKиLсоответственно, а ее центр находится в точкеO.

ЛучиAOиBOявляются биссектрисами угловBADиABCсоответственно, поэтому.

Окружность вписанная в трапецию abcd касается боковых

Так как касательные к окружности из одной точки равны, то :

BC + AD = 9MB + 3CN.

AD = 6MB + 3BC — BC или

AD = 8MB + 2CN = 6MB + 2BC.

Треугольники АВО и СОD — прямоугольные (так как боковая сторона трапеции видна из центра вписанной в нее окружности под углом 90° — свойство).

Высоты ОМ и ОN (равные радиусу) равны.

По свойству высоты из прямого угла имеем :

ОМ = (2√2) * МВ ; ОN = √2 * CN.

Тогда 6МВ = 2МВ + 4МВ = 2МВ + 2CN = 2ВС.

AD = 6MB + 2BC (доказано выше).

AD = 2BC + 2BC = = 4ВС, что и требовалось доказать.

Окружность вписанная в трапецию abcd касается боковых

Окружность вписанная в трапецию abcd касается боковых

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

В трапецию вписана окружность?

В трапецию вписана окружность.

Найти периметр трапеции если ее боковые стороны равны 7см и 9см.

Окружность вписанная в трапецию abcd касается боковых

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Точка E середина боковой стороны CDMA трапеции ABCD?

Точка E середина боковой стороны CDMA трапеции ABCD.

Докажите что площадь треугольника ABE равна половине площади трапеции.

Окружность вписанная в трапецию abcd касается боковых

Видео:Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

45 баллов?

Основания AD и BC трапеции ABCD и боковая сторона AB равны соответственно 21, 7 и 12.

Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если сумма углов при основании трапеции равна 90 градусов.

Окружность вписанная в трапецию abcd касается боковых

Видео:Задание 16 ОГЭ по математике. Окружность вписана в трапецию.Скачать

Задание 16 ОГЭ по математике. Окружность вписана в трапецию.

В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС?

В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС.

Известно, что в эту трапецию можно вписать окружность.

Построена окружность, которая касается большего основания АД, боковой стороны СД и вписанной окружности трапеции.

А) Прямая, проходящая через центр построенной окружности и центр окружности, вписанной в трапецию, пересекает сторону АВ в точке Р.

Докажите, что АР / ВР = АД / ВС.

Б) Найти радиус плстроенной окружности, если радиус вписанрой в трапецию окружности равен 1.

Окружность вписанная в трапецию abcd касается боковых

Видео:ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать

ОГЭ Задание 25 Демонстрационный вариант 2022, математика

Боковая сторона равнобедренного треугольника равна 18, основание равно 12?

Боковая сторона равнобедренного треугольника равна 18, основание равно 12.

Вписанная окружность касается боковых сторон в точках С и Е.

Окружность вписанная в трапецию abcd касается боковых

Видео:Трапеция и окружность. 9 классСкачать

Трапеция и окружность. 9 класс

Боковая сторона равнобедренного треугольника равна 18, основание равно 12?

Боковая сторона равнобедренного треугольника равна 18, основание равно 12.

Вписанная окружность касается боковых сторон в точках С и Е.

Окружность вписанная в трапецию abcd касается боковых

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

В трапеции ABCD основания AD и BC равны соответственно 5 и 2?

В трапеции ABCD основания AD и BC равны соответственно 5 и 2.

Окружность, описанная около треугольника ABC, касается основания AD и боковой стороны CD.

Найти радиус окружности.

Окружность вписанная в трапецию abcd касается боковых

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°?

Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°.

Найдите площадь трапеции, если известно, что в нее можно вписать окружность.

Окружность вписанная в трапецию abcd касается боковых

Видео:Геометрия. ОГЭ по математике. Задание 16Скачать

Геометрия. ОГЭ по математике. Задание 16

Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°?

Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°.

Найдите площадь трапеции, если известно, что в нее можно ВПИСАТЬ окружность.

Окружность вписанная в трапецию abcd касается боковых

Видео:В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,DСкачать

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. окружность проходит через точки C,D

В трапецию абсд вписана окружность с центром и?

В трапецию абсд вписана окружность с центром и.

Найдите периметр трапеции если сумма растояний от точки и до середин боковых сторон равна 30.

Окружность вписанная в трапецию abcd касается боковых

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2?

В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2.

Найти высоту трапеции.

Вы зашли на страницу вопроса Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Окружность вписанная в трапецию abcd касается боковых

Дано : Цилиндр ; R = 4 см h = 7 см Найти Р. Решение : Осевое сечение цилиндра — прямоугольник, у которого одна сторона это высота цилиндра h = 7 см, а вторая сторона это диаметр основания D = 2R = 2· 4см = 8 см Периметр прямоугольника P = 2(D + h) P..

Окружность вписанная в трапецию abcd касается боковых

Они имеют общую вершину.

Окружность вписанная в трапецию abcd касается боковых

АС и ВД — это диагонали Если АВ = СД, значит ВС = ДА. Тогда АС = ВД(по теореме про равность диагоналей).

Окружность вписанная в трапецию abcd касается боковых

Решение на фото….

Окружность вписанная в трапецию abcd касается боковых

Гипотенуза AB будет равна по выше иссказаным данным 9 см.

Окружность вписанная в трапецию abcd касается боковых

∠ABF = 180° (развернутый угол) ∠ABF = ∠ABD + ∠DBF = ∠ABС / 2 + ∠DBF ∠MBD = ∠MBF + ∠DBF = ∠KBF / 2 + ∠DBF ∠ABC = ∠KBF (вертикальные углы) ∠ABС / 2 = ∠KBF / 2 ∠MBD = ∠ABF = 180°.

Окружность вписанная в трапецию abcd касается боковых

По идее так. Радиус в в) ищется очень криво и мне кажется, что это неправильно. Г) я не осилил, ибо там тоже нужно прибегать к ф — лам, которые невозможно запомнить. Извини((.

Окружность вписанная в трапецию abcd касается боковых

Бери транспортир и мерий.

Окружность вписанная в трапецию abcd касается боковых

Если периметр квадрата равен 32 см, то его сторона в 4 раза меньше, 32 : 4 = 8 см. Площадь такого квадрата равна 8² = 64 см². Значит площадь параллелограмма S = a * h = 64 Т. К. высота равна 4, то основание будет 64 / 4 = 16 см.

Окружность вписанная в трапецию abcd касается боковых

Сторона треугольника a = 14, а высота h = 31 площадь треугольника найдем по формуле S = a×h / 2 подставим S = 14×31 / 2 = 434 / 2 = 217.

Видео:Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

Геометрия 8 класс (Урок№32 - Вписанная окружность.)

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?

Геометрия | 5 — 9 классы

Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно.

Известно, что AM = 8MB и DN = 2CN.

Докажите, что AD = 4BC.

Окружность вписанная в трапецию abcd касается боковых

А) Пусть окружность касается основанийBCиADв точкахKиLсоответственно, а ее центр находится в точкеO.

ЛучиAOиBOявляются биссектрисами угловBADиABCсоответственно, поэтому.

Окружность вписанная в трапецию abcd касается боковых

Так как касательные к окружности из одной точки равны, то :

BC + AD = 9MB + 3CN.

AD = 6MB + 3BC — BC или

AD = 8MB + 2CN = 6MB + 2BC.

Треугольники АВО и СОD — прямоугольные (так как боковая сторона трапеции видна из центра вписанной в нее окружности под углом 90° — свойство).

Высоты ОМ и ОN (равные радиусу) равны.

По свойству высоты из прямого угла имеем :

ОМ = (2√2) * МВ ; ОN = √2 * CN.

Тогда 6МВ = 2МВ + 4МВ = 2МВ + 2CN = 2ВС.

AD = 6MB + 2BC (доказано выше).

AD = 2BC + 2BC = = 4ВС, что и требовалось доказать.

Окружность вписанная в трапецию abcd касается боковых

Окружность вписанная в трапецию abcd касается боковых

Видео:14.43.1. Планиметрия. Гордин Р.К.Скачать

14.43.1. Планиметрия. Гордин Р.К.

В трапецию вписана окружность?

В трапецию вписана окружность.

Найти периметр трапеции если ее боковые стороны равны 7см и 9см.

Окружность вписанная в трапецию abcd касается боковых

Видео:8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

Точка E середина боковой стороны CDMA трапеции ABCD?

Точка E середина боковой стороны CDMA трапеции ABCD.

Докажите что площадь треугольника ABE равна половине площади трапеции.

Окружность вписанная в трапецию abcd касается боковых

Видео:Окружность, вписанная в трапецию.A circle inscribed in a trapezoid.Скачать

Окружность, вписанная в трапецию.A circle inscribed in a trapezoid.

45 баллов?

Основания AD и BC трапеции ABCD и боковая сторона AB равны соответственно 21, 7 и 12.

Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если сумма углов при основании трапеции равна 90 градусов.

Окружность вписанная в трапецию abcd касается боковых

Видео:Задание 16 ЕГЭ по математикеСкачать

Задание 16 ЕГЭ по математике

В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС?

В трапеции АВСД углы при вершинах А и В прямые, а боковая сторона СД ровно вдвое длинее меньшего основания ВС.

Известно, что в эту трапецию можно вписать окружность.

Построена окружность, которая касается большего основания АД, боковой стороны СД и вписанной окружности трапеции.

А) Прямая, проходящая через центр построенной окружности и центр окружности, вписанной в трапецию, пересекает сторону АВ в точке Р.

Докажите, что АР / ВР = АД / ВС.

Б) Найти радиус плстроенной окружности, если радиус вписанрой в трапецию окружности равен 1.

Окружность вписанная в трапецию abcd касается боковых

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Боковая сторона равнобедренного треугольника равна 18, основание равно 12?

Боковая сторона равнобедренного треугольника равна 18, основание равно 12.

Вписанная окружность касается боковых сторон в точках С и Е.

Окружность вписанная в трапецию abcd касается боковых

Видео:Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Боковая сторона равнобедренного треугольника равна 18, основание равно 12?

Боковая сторона равнобедренного треугольника равна 18, основание равно 12.

Вписанная окружность касается боковых сторон в точках С и Е.

Окружность вписанная в трапецию abcd касается боковых

Видео:Почему любая вписанная трапеция будет равнобедренной? #геометрияегэСкачать

Почему любая вписанная трапеция будет равнобедренной? #геометрияегэ

В трапеции ABCD основания AD и BC равны соответственно 5 и 2?

В трапеции ABCD основания AD и BC равны соответственно 5 и 2.

Окружность, описанная около треугольника ABC, касается основания AD и боковой стороны CD.

Найти радиус окружности.

Окружность вписанная в трапецию abcd касается боковых

Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°?

Большая боковая сторона прямоугольной трапеции равна 12корень из 2см, а острый угол — 45°.

Найдите площадь трапеции, если известно, что в нее можно вписать окружность.

Окружность вписанная в трапецию abcd касается боковых

Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°?

Большая боковая сторона прямоугольной трапеции равна 12√2см, а острый угол — 45°.

Найдите площадь трапеции, если известно, что в нее можно ВПИСАТЬ окружность.

Окружность вписанная в трапецию abcd касается боковых

В трапецию абсд вписана окружность с центром и?

В трапецию абсд вписана окружность с центром и.

Найдите периметр трапеции если сумма растояний от точки и до середин боковых сторон равна 30.

Окружность вписанная в трапецию abcd касается боковых

В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2?

В трапецию вписана окружность, точка касания окружности с боковой стороной делит эту сторону на два отрезка — 8 и 2.

Найти высоту трапеции.

Вы зашли на страницу вопроса Окружность, вписанная в трапецию ABCD, касается ее боковых сторон AB и CD в точках M и N соответственно?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Окружность вписанная в трапецию abcd касается боковых

Дано : Цилиндр ; R = 4 см h = 7 см Найти Р. Решение : Осевое сечение цилиндра — прямоугольник, у которого одна сторона это высота цилиндра h = 7 см, а вторая сторона это диаметр основания D = 2R = 2· 4см = 8 см Периметр прямоугольника P = 2(D + h) P..

Окружность вписанная в трапецию abcd касается боковых

Они имеют общую вершину.

Окружность вписанная в трапецию abcd касается боковых

АС и ВД — это диагонали Если АВ = СД, значит ВС = ДА. Тогда АС = ВД(по теореме про равность диагоналей).

Окружность вписанная в трапецию abcd касается боковых

Решение на фото….

Окружность вписанная в трапецию abcd касается боковых

Гипотенуза AB будет равна по выше иссказаным данным 9 см.

Окружность вписанная в трапецию abcd касается боковых

∠ABF = 180° (развернутый угол) ∠ABF = ∠ABD + ∠DBF = ∠ABС / 2 + ∠DBF ∠MBD = ∠MBF + ∠DBF = ∠KBF / 2 + ∠DBF ∠ABC = ∠KBF (вертикальные углы) ∠ABС / 2 = ∠KBF / 2 ∠MBD = ∠ABF = 180°.

Окружность вписанная в трапецию abcd касается боковых

По идее так. Радиус в в) ищется очень криво и мне кажется, что это неправильно. Г) я не осилил, ибо там тоже нужно прибегать к ф — лам, которые невозможно запомнить. Извини((.

Окружность вписанная в трапецию abcd касается боковых

Бери транспортир и мерий.

Окружность вписанная в трапецию abcd касается боковых

Если периметр квадрата равен 32 см, то его сторона в 4 раза меньше, 32 : 4 = 8 см. Площадь такого квадрата равна 8² = 64 см². Значит площадь параллелограмма S = a * h = 64 Т. К. высота равна 4, то основание будет 64 / 4 = 16 см.

Окружность вписанная в трапецию abcd касается боковых

Сторона треугольника a = 14, а высота h = 31 площадь треугольника найдем по формуле S = a×h / 2 подставим S = 14×31 / 2 = 434 / 2 = 217.

Поделиться или сохранить к себе: