Построение аксонометрических проекций окружности вызывает трудности, в связи с тем, что окружность принимает вид эллипса в аксонометрии. Возникает вопрос: как рисовать эллипс? Чтобы построить окружность в аксонометрии используют следующие способы: — построение по вспомогательной квадратной сетке; — построение при помощи циркуля;
По первому способу квадрат описывает окружность и делится на 4×4=16. Отмечаем точки пересечения линий сетки с линией окружности. Затем строим аксонометрическую проекцию сетки и на ней отмечаем точки A0, 10, 20, . 80. По этим точкам строим окружность, при помощи лекала. Данным способом окружность строится также в перспективе.
Окружность для данного вида аксонометрической проекции — прямоугольной изометрии получилась получилась несколько больше своего действительного размера, в следствии применения приведенных коэффициентов искажения.
По второму способу окружность строится при помощи циркуля Построение аксонометрических проекций окружности в косоугольной фронтальной диметрии
Пусть окружность расположена параллельно горизонтальной плоскости проекции: — сначала определяем направление большой и малой оси эллипса, используя для этого построение показанное на рисунке Сопрягаемые диаметры AB и CD построены на аксонометрических осях x0 и y0, их центры совпадают с началом координат. Концы одного из диаметров (AB) соединим дугой окружности из центра O0. Восстановив перпендикуляр к диаметру в точке O0 отметим на их пересечении точку E. Соединяем точки C, E прямой линией. Находим середину отрезка CE — точку K. Из точки K описываем окружность радиусом KO0 и отмечаем точки F и G, в которых она пересекается с прямой CE. Длина половины большой оси равна отрезкам GE, CF, длина половины малой оси равна отрезкам CG, EF; — затем, после построения осей эллипса:
— проводим прямую O — 2 делящую угол между осями пополам при этом находим точки 1 и 2 пересечения данной прямой с окружностями малой и большой оси; — из точки 1 проводим прямую параллельную большой оси, а из точки 2 проводим прямую параллельную малой оси и на их пересечении находим точку эллипса E; — соединяем точки E, C прямой линией. Через середину отрезка CE восстанавливаем к нему перпендикуляр до пересечения с малой осью в точке O1, которая определяет центр дуги CE; — строим точку O2 симметричную O1, относительно центра эллипса — O; — на пересечении дуг CE и 2B отмечаем точку L, проводим через данную точку прямую параллельную большой оси до пересечения ее в точке M с прямой BM, перпендикулярной большой оси — OB; — из центра M проводим дугу радиусом MB до пересечения ее с дугой CE в точке K, являющейся точкой сопряжения дуг овала; — соединив прямой линией точки K и O1 на пересечении ее с большой осью находим точку O3, являющуюся центром дуги BK; — точку P находим на пересечении прямой O2O3 с дугой радиусом O3B. P — точка сопряжения дуг BK и BP; — точке O3 симметрична относительно центра эллипса точка O4; — аналогично, построив точки сопряжения для левой половины , проводим дуги овала, предварительно удалив ненужные построения.
Построение аксонометрических проекций окружности в прямоугольной изометрии
Графически определяем размеры осей эллипса: — проводим две взаимно перпендикулярные линии; — приняв точку их пересечения за центр O, описываем из него окружность заданного диаметра и отмечаем точки E и F; — из точек E и F описываем дуги радиусом R = EF = FE и находим точки их пересечения A и B; — соединив точки A и B, получим большую ось эллипса, равную 1,22d; — соединив точки E и F, получим малую ось эллипса, равную 0,7d
Пусть, строится окружность, расположенная параллельно горизонтальной плоскости проекции
где большая ось AB перпендикулярна свободной оси (z) и малая ось CD. — затем, после построения осей эллипса: — проводим прямую O — 2 делящую угол между осями пополам при этом находим точки 1 и 2 пересечения данной прямой с окружностями малой и большой оси; — из точки 1 проводим прямую параллельную большой оси, а из точки 2 проводим прямую параллельную малой оси и на их пересечении находим точку эллипса E; — соединяем точки E, C прямой линией. Через середину отрезка CE восстанавливаем к нему перпендикуляр до пересечения с малой осью в точке O1, которая определяет центр дуги CE; — строим точку O2 симметричную O1, относительно центра эллипса — O; — на пересечении дуг CE и 2B отмечаем точку L, проводим через данную точку прямую параллельную большой оси до пересечения ее в точке M с прямой BM, перпендикулярной большой оси — OB; — из центра M проводим дугу радиусом MB до пересечения ее с дугой CE в точке K, являющейся точкой сопряжения дуг овала; — соединив прямой линией точки K и O1 на пересечении ее с большой осью находим точку O3, являющуюся центром дуги BK; — точку P находим на пересечении прямой O2O3 с дугой радиусом O3B. P — точка сопряжения дуг QP и BP; — точке O3 симметрична относительно центра эллипса точка O4; — аналогично, построив точки сопряжения для левой половины , проводим дуги овала, предварительно удалив ненужные построения.
Более просто выглядит построение окружности, расположенной параллельно горизонтальной плоскости проекции
Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать
Аксонометрия окружности
Как видно из табл. 4, окружность в аксонометрии изображается в виде эллипса. Любой эллипс (рис. 82) характеризуется двумя сопряженными диаметрами EF и АХ и двумя осями:
АВ (большая ось) и CD (малая ось). Сопряженные диаметры являются изображением взаимно перпендикулярных диаметров окружности и направлены вдоль аксонометрических осей. Оси эллипса взаимно перпендикулярны (АВ _L CD) и определяют ориентацию эллипса в каждой аксонометрической плоскости.
В прямоугольных аксонометриях малая ось эллипса всегда параллельна той аксонометрической оси, которая не лежит в плоскости эллипса. Так, если эллипс расположен в плоскости х’0’у то малая ось параллельна z в плоскости x’O’z’ — параллельна у в плоскости y’O’z’ — параллельна х Размеры большой и малой оси эллипсов указаны в табл. 4. Там же приведена и ориентация их осей в косоугольных аксонометриях.
Видео:Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать
Треугольник пропорциональности
Для перехода от одного масштаба к другому рекомендуется использовать треугольник пропорциональности. Построим два таких треугольника для прямоугольной аксонометрии окружности: один в изометрии, другой в диметрии (рис. 83).
Прямоугольная изометрия (рис. 83, а). На произвольном, но фиксированном расстоянии друг от друга (например, 40 мм), принимаемом за единичное, проводим две параллельные прямые. Верхнюю прямую линию принимаем за шкалу натурального масштаба. От нижней прямой откладываем расстояния, пропорциональные размерам большой и малой оси эллипса в прямоугольной изометрии: 1,22 и 0,71 (40 х 1,22 = 48,8; 40 х 0,71 = 28,4). Через полученные отметки проводим прямые, параллельные первым двум. Затем проводим прямую, пересекающую все шкалы под произвольным углом. В точке пересечения ее с каждой прямой будет начало отсчета соответствующей шкалы. Верхняя шкала будет с коэффициентом 1,22, нижняя — с коэффициентом 0,71. Размеры, взятые с чертежа, откладываем на натуральной шкале и из точки А проецируем их на нужную шкалу.
Прямоугольная диметрия (рис. 83, б). Построения выполняются так же, как в изометрии, с той лишь разницей, что коэффициенты берем 1,06; 0,35; 0,5; 0,95.
Видео:ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать
Окружность в аксонометрии эллипс
Контрольные задания по теме: эпюр № 6
Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.
Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.
Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.
В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:
— изометрические, когда все три коэффициента искажения одинаковы (kx=ky=kz);
— диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (kx= kz ≠ky);
— триметрические, когда все три коэффициенты искажения не равны между собой (kx≠ky≠kz).
В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.
В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.
Изометрические оси изображены на рисунке 57.
Рисунок 57
Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О — получают направление оси Х. Таким же образом соединяют точку С с точкой О — получают направление оси Y.
Рисунок 58
Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.
Рисунок 59
Построение окружности в прямоугольной изометрической проекции
Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.
Размер большой оси эллипса 1,22d, малой 0,7d, где d — диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ — большая ось эллипса.
Рисунок 60
Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О1, О2, О3, О4, являющиеся центрами дуг овала (рисунок 61).
Для определения точек сопряжения проводят линии центров, соединяя О1, О2, О3, О4. из полученных центров О1, О2, О3, О4 проводят дуги радиусами R и R1. размеры радиусов видны на чертеже.
Рисунок 61
Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).
Рисунок 62
Штриховка и изометрической проекции
Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.
Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.
По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты kx=kz=1, ky=0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.
Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:
На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа – семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.
Рисунок 63
Построение диметрической проекции шестиугольника
Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П1 (рисунок 64).
Рисунок 64
На оси Х откладываем отрезок равный величине b, чтобы его середина находилась в точке О, а по оси Y – отрезок а, размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.
Рисунок 65
Построение окружности в диметрии
В прямоугольной диметрии все окружности изображаются эллипсами,
Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей – 0,35 d.
На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).
Через точку О – начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО1 и ОО2, равные по величине 1,06d. Точки О1 и О2 являются центром больших дуг овала. Для определения еще двух центров (О3 и О4) откладываем на горизонтальной прямой от точек А и В отрезки АО3 и ВО4, равные ¼ величины малой оси эллипса, то есть d.
Рисунок 66
Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 – радиусом до точек А и В (рисунок 67).
Рисунок 67
Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П2, рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О1, О2, О3, О4 – центры дуг овала (рисунок 68).
Из центров О3 и О4 описывают дугу радиусом R2=О3 М, а из центров О1 и О2 — дуги радиусом R1= О2 N
Рисунок 68
Штриховка а прямоугольной диметрии
Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).
Рисунок 69
- Какие виды аксонометрических проекций вы знаете?
- Под каким углом расположены оси в изометрии?
- Какую фигуру представляет изометрическая проекция окружности?
- Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
- Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
- Под какими углами расположены оси в диметрии?
- Какой фигурой будет являться диметрическая проекция квадрата?
- Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
- Основные правила нанесения штриховки в аксонометрических проекциях.
|