Окружность с диаметром равным высоте прямоугольного треугольника

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Окружность с диаметром равным высоте прямоугольного треугольника

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Окружность с диаметром равным высоте прямоугольного треугольника

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Окружность с диаметром равным высоте прямоугольного треугольникаЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Окружность с диаметром равным высоте прямоугольного треугольника

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Окружность с диаметром равным высоте прямоугольного треугольника

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Окружность с диаметром равным высоте прямоугольного треугольника

3. Теорема Пифагора:

Окружность с диаметром равным высоте прямоугольного треугольника, где Окружность с диаметром равным высоте прямоугольного треугольника– катеты, Окружность с диаметром равным высоте прямоугольного треугольника– гипотенуза. Видеодоказательство

Окружность с диаметром равным высоте прямоугольного треугольника

4. Площадь Окружность с диаметром равным высоте прямоугольного треугольникапрямоугольного треугольника с катетами Окружность с диаметром равным высоте прямоугольного треугольника:

Окружность с диаметром равным высоте прямоугольного треугольника

5. Высота Окружность с диаметром равным высоте прямоугольного треугольникапрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Окружность с диаметром равным высоте прямоугольного треугольникаи гипотенузу Окружность с диаметром равным высоте прямоугольного треугольникаследующим образом:

Окружность с диаметром равным высоте прямоугольного треугольника

Окружность с диаметром равным высоте прямоугольного треугольника

6. Центр описанной окружности – есть середина гипотенузы.

Окружность с диаметром равным высоте прямоугольного треугольника

7. Радиус Окружность с диаметром равным высоте прямоугольного треугольникаописанной окружности есть половина гипотенузы Окружность с диаметром равным высоте прямоугольного треугольника:

Окружность с диаметром равным высоте прямоугольного треугольника

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Окружность с диаметром равным высоте прямоугольного треугольникавписанной окружности выражается через катеты Окружность с диаметром равным высоте прямоугольного треугольникаи гипотенузу Окружность с диаметром равным высоте прямоугольного треугольникаследующим образом:

Окружность с диаметром равным высоте прямоугольного треугольника

Окружность с диаметром равным высоте прямоугольного треугольника

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.Скачать

ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.

Решение №2522 Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС.

Точка Н является основанием высоты ВН, проведённой из вершины прямого угла В прямоугольного треугольника АВС. Окружность с диаметром ВН пересекает стороны АВ и СВ в точках Р и К соответственно. Найдите РК, если ВН = 12.

Источник: ОГЭ Ященко 2022 (50 вар)

Окружность с диаметром равным высоте прямоугольного треугольника

По условию ВН = 12 и является диаметром окружности.
Рассмотрим ΔРВК, он прямоугольный (∠РВК = 90°), вписанный в окружность, тогда его гипотенуза РК , является диаметром окружности.
Диаметры окружности равны:

ВН = РК = 12

Ответ: 12.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 5 / 5. Количество оценок: 1

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время

В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Видео:Длина катета прямоугольного треугольника равна 8 см. Окружность с диаметром пересекает гипотенузуСкачать

Длина катета  прямоугольного треугольника  равна 8 см. Окружность с диаметром  пересекает гипотенузу

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Окружность с диаметром равным высоте прямоугольного треугольника

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Окружность с диаметром равным высоте прямоугольного треугольника

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Окружность с диаметром равным высоте прямоугольного треугольника

Окружность с диаметром равным высоте прямоугольного треугольника

2. Через длины сторон треугольника:

Окружность с диаметром равным высоте прямоугольного треугольника

Окружность с диаметром равным высоте прямоугольного треугольника

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Окружность с диаметром равным высоте прямоугольного треугольника
Окружность с диаметром равным высоте прямоугольного треугольника

Окружность с диаметром равным высоте прямоугольного треугольника

Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Окружность с диаметром равным высоте прямоугольного треугольника

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

🔍 Видео

Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

На катете ML прямоугольного треугольника KLM как на диаметре построена окружностьСкачать

На катете ML прямоугольного треугольника KLM как на диаметре построена окружность

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать

№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиус

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном ТреугольникеСкачать

ПРОБЛЕМНЫЕ ЗАДАЧИ #1 ЕГЭ 2024 с Высотой в Прямоугольном Треугольнике

Расстояние от точки до плоскости / Вывод формулыСкачать

Расстояние от точки до плоскости / Вывод формулы

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

№704. Окружность с центром О описана около прямоугольного треугольника, а) ДокажитеСкачать

№704. Окружность с центром О описана около прямоугольного треугольника, а) Докажите

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?
Поделиться или сохранить к себе: