Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается стороны AB треугольника ABC, у которого ∠C = 90°, и продолжений его сторон AC и BC за точки A и B соответственно. Докажите, что периметр треугольника ABC равен диаметру этой окружности.

Пусть O — центр окружности, d — её диаметр, а M, N и K — точки касания окружности с прямыми AC, AB и BC соответственно. Радиус OM перпендикулярен AC, а OK перпендикулярен BC. Следовательно, в четырёхугольнике OMCK имеем ∠C = ∠M = ∠K = 90°, а значит, OMCK — прямоугольник. Поскольку OM = OK, прямоугольник OMCK — квадрат. Следовательно, Окружность касается продолжения сторон треугольника

Отрезки касательных, проведённых из одной точки к окружности, равны: AM = AN, BN = BK и CM = CK. Периметр треугольника ABC равен

Видео:Окружность, радиус которой равен 14, касается одной из сторон треугольника и продолжений двух другихСкачать

Окружность, радиус которой равен 14, касается одной из сторон треугольника и продолжений двух других

Вневписанная окружность треугольника.

Окружность касается продолжения сторон треугольника

Определение.

Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.

Теорема 1.

Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.

Окружность касается продолжения сторон треугольника

Доказательство.

BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.

СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.

Следовательно, точка F равноудалена от сторон ∠BAC.

Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.

Теорема 2.

Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.

Окружность касается продолжения сторон треугольника

Доказательство.

BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).

PΔABC=AB+ BC +AC=AB+ BG + GC +AC=AB+ BJ + AC +CH=AJ+AH.

Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.

Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.

Видео:Окружность касается боковых сторон АВ и ВС остроугольного треугольника АВС в точкахА и С соответствеСкачать

Окружность касается боковых сторон АВ и ВС остроугольного треугольника АВС в точкахА и С соответстве

Вневписанные окружности

Теорема 1 . В любом треугольнике биссектрисы двух внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и продолжим, например, стороны BA и BC за точки A и C соответственно (рис.1).

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Проведём биссектрисы углов DAC и ECA , которые являются внешними углами треугольника ABC . Обозначим точку пересечения этих биссектрис буквой O . Докажем, что точка O лежит на биссектрисе угла ABC , который является внутренним углом треугольника ABC , не смежным с внешними углами DAC и ECA . С этой целью опустим из точки O перпендикуляры OF , OG и OH на прямые AB , AC и BC соответственно. Поскольку AO – биссектриса угла DAC , то справедливо равенство:

Следовательно, справедливо равенство

Замечание 1 . В ходе доказательства теоремы 1 мы установили, что справедливы равенства

откуда вытекает, что точки F , G и H лежат на одной окружности с центром в точке O .

Определение . Окружность называют окружностью, вневписанной в треугольник , или вневписанной окружностью, если она касается касается одной стороны треугольника и продолжений двух других сторон (рис.2).

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Замечание 2 . У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.

Замечание 3 . Центр вневписанной окружности, изображенной на рисунке 2, лежит на биссектрисе угла B , а окружность касается стороны b . Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b , и обозначать её радиус символом rb .

Теорема 2 . Пусть вневписанная окружность касается стороны AC треугольника ABC . Тогда отрезки касательных касательных от вершины B до точек касания с вневписанной окружностью равны полупериметру треугольника.

Доказательство . Снова рассмотрим рисунок 2 и докажем, что выполнено равенство

Окружность касается продолжения сторон треугольника

где a, b, c – стороны треугольника ABC . Действительно, отрезки AG и AF равны, как отрезки касательных к окружности, выходящих из точки A . Отрезки CG и CH равны, как отрезки касательных к окружности, выходящих из точки C . Отрезки BF и BH равны, как отрезки касательных к окружности, выходящих из точки B . Отсюда получаем:

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

где буквой p обозначен полупериметр треугольника ABC . Теорема 2 доказана.

Теорема 3 . Радиус вневписанной окружности , касающейся стороны b , вычисляется по формуле

Окружность касается продолжения сторон треугольника

где буквой S обозначена площадь треугольника ABC , а буквой p обозначен полупериметр треугольника ABC .

Доказательство . Снова рассмотрим рисунок 2 и заметим, что выполнены равенства

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Следовательно, справедливо равенство

Окружность касается продолжения сторон треугольника

что и требовалось доказать.

Следствие . Радиусы двух других вневписанных в треугольник ABC окружностей вычисляются по формулам:

Окружность касается продолжения сторон треугольника

Теорема 4 . Если обозначить буквой r радиус вписанной в треугольник ABC окружности, то будет справедлива формула:

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Складывая эти формулы и воспользовавшись формулой для радиуса вписанной окружности

Окружность касается продолжения сторон треугольника,

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

что и требовалось доказать.

Теорема 5 . Площадь треугольника можно вычислить по формуле

Окружность касается продолжения сторон треугольника

Доказательство . Перемножим формулы

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

что и требовалось доказать.

Теорема 6 . Если обозначить буквой R радиус описанной около треугольника ABC окружности, то будет справедлива формула:

Доказательство . Воспользовавшись формулами для радиусов вписанной и вневписанных окружностей, а также формулой Герона, получим

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Окружность касается продолжения сторон треугольника

Преобразуем выражение, стоящее в квадратной скобке:

📹 Видео

ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать

ОГЭ Задание 25 Демонстрационный вариант 2022, математика

Вневписанная окружностьСкачать

Вневписанная окружность

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Демо ОГЭ по математике, задание 26Скачать

Демо ОГЭ по математике, задание 26

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16

Задание 16 ЕГЭ по математике #6Скачать

Задание 16 ЕГЭ по математике #6

Лекция 59. Вневписанная окружность.Скачать

Лекция 59. Вневписанная окружность.

Егэ c4. Вневписанная окружностьСкачать

Егэ c4. Вневписанная окружность

ОКРУЖНОСТЬ КАСАЕТСЯ КАТЕТОВ, ЖЕСТЬ, ПРОСТО!Скачать

ОКРУЖНОСТЬ КАСАЕТСЯ КАТЕТОВ, ЖЕСТЬ, ПРОСТО!

ОГЭ 2022 Демоверсия. 25 задание | Основание AC равнобедренного треугольника ABC равно 12.....Скачать

ОГЭ 2022 Демоверсия. 25 задание | Основание AC равнобедренного треугольника ABC равно 12.....

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Четыре окружности Трудная задача на доказательствоСкачать

Четыре окружности Трудная задача на доказательство

Решение планиметрических задач повышенного уровня сложности. ПродолжениеСкачать

Решение планиметрических задач повышенного уровня сложности. Продолжение

Вневписанная окружность | Теоремы об окружностях - 3Скачать

Вневписанная окружность | Теоремы об окружностях - 3

ОГЭ, геометрия, задачи повышенной сложности. Часть 3Скачать

ОГЭ, геометрия, задачи повышенной сложности. Часть 3

Прямоугольник и окружностьСкачать

Прямоугольник и окружность
Поделиться или сохранить к себе: