Что такое котангенс в прямоугольном треугольнике? Как найти котангенс? От чего зависит значение котангенса?
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
Например, в треугольнике ABC для угла A
Поэтому котангенс угла A в прямоугольном треугольнике ABC — это
Для угла B треугольника ABC
прилежащий катет — BC,
Поэтому, котангенс угла B в треугольнике ABC
равен отношению BC к AC:
Таким образом, котангенс острого угла прямоугольного треугольника — это некоторое число, получаемое в результате деления длины прилежащего к этому углу катета на длину катета противолежащего.
Так как длины катетов — положительные числа, то и котангенс острого угла прямоугольного треугольника является положительным числом.
Котангенс зависит не от длин катетов, а от их отношения. Для угла определенной величины отношение между катетами, а значит, и значение котангенса, — число постоянное.
Если изменить длины сторон треугольника, но углы оставить без изменения, то котангенсы этих углов не изменятся.
Например,
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Синус, косинус и тангенс острого угла прямоугольного треугольника
Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.
Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.
Острый угол — меньший 90 градусов.
Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂
Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .
Угол обозначается соответствующей греческой буквой .
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.
Катеты — стороны, лежащие напротив острых углов.
Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.
Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:
Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:
Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:
Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):
Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.
Давайте докажем некоторые из них.
- Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
- С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим.Получаем, что . Иными словами, .
- Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
- Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,
Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?
Мы знаем, что сумма углов любого треугольника равна .
Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .
Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?
С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.
Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.
Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .
0 | |
0 | |
0 | |
0 | − |
− | 0 |
Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.
Ты нашел то, что искал? Поделись с друзьями!
Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.
1. В треугольнике угол равен , . Найдите .
Задача решается за четыре секунды.
2 . В треугольнике угол равен , , . Найдите .
Найдем по теореме Пифагора.
Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!
Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.
Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.
Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.
Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Калькулятор и таблица для вычисления тангенса и котангенса.
С помощью онлайн калькулятора вы сможете вычислить тангенс и котангенс с точностью от одного до шестнадцати знаков после запятой. Чтобы вычислить тангенс и котангенс, просто введите ваши данные. Так же можно воспользоватся таблицей Брадиса тангенса(tg) и котангенса(ctg) от 0° до 360°.
Калькулятор для вычисления тангенса и котангенса
Цифр после запятой
Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать
Тангенс острого угла прямоугольного треугольника.
Tg (α) острого угла прямоугольного треугольника — это отношение противолежащего катета(BC) к прилежащему катету(AC).
Пимер:
α = 40°; BC = 7,552см; AC = 9см.
tg (40°) = 7,552 9 = 0,8391
Видео:Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать
Котангенс острого угла прямоугольного треугольника.
Ctg (α) острого угла прямоугольного треугольника — это отношение прилежащего катета(AC) к противолежащему катету(BC).
Пимер:
α = 40°; AC = 9см; BC = 7,552см.
ctg (40°) = 9 7,552 = 1,1918
📽️ Видео
Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать
Геометрия 8 класс (Урок№21 - Косинус, синус и тангенс острого угла прямоугольного треугольника.)Скачать
ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать
Тангенс и котангенс произвольного угла. 9 класс.Скачать
Синус, косинус, тангенс острого угла прямоугольного треугольникаСкачать
Основное тригонометрическое тождество. 8 класс.Скачать
68. Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Самый короткий тест на интеллект Задача Массачусетского профессораСкачать
Косинус, синус и тангенс острого угла прямоугольного треугольникаСкачать
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Геометрия 8 класс : Решение задач на sin, cos и tg острого угла прямоугольного треугольникаСкачать
Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольникаСкачать
Синус, косинус, тангенс, котангенс в прямоугольном треугольнике #геометрия #школа #огэ #играСкачать
Видео урок 2. Синус, косинус и тангенс острого угла прямоугольного треугольника. Холошиной В.А.Скачать
Синус, косинус и тангенс острого угла в прямоугольном треугольникеСкачать