Окружность и прямая не пересекаются если d r

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Окружность и прямая не пересекаются если d r

1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

3. Если d R — R1, то окружности пересекаются.

4. Если d = R — R1, то окружности касаются изнутри.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Видео:8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать

8 класс, 31 урок, Взаимное расположение прямой и окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Окружность и прямая не пересекаются если d rОтрезки и прямые, связанные с окружностью
Окружность и прямая не пересекаются если d rСвойства хорд и дуг окружности
Окружность и прямая не пересекаются если d rТеоремы о длинах хорд, касательных и секущих
Окружность и прямая не пересекаются если d rДоказательства теорем о длинах хорд, касательных и секущих
Окружность и прямая не пересекаются если d rТеорема о бабочке

Окружность и прямая не пересекаются если d r

Видео:Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьОкружность и прямая не пересекаются если d r
КругОкружность и прямая не пересекаются если d r
РадиусОкружность и прямая не пересекаются если d r
ХордаОкружность и прямая не пересекаются если d r
ДиаметрОкружность и прямая не пересекаются если d r
КасательнаяОкружность и прямая не пересекаются если d r
СекущаяОкружность и прямая не пересекаются если d r
Окружность
Окружность и прямая не пересекаются если d r

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругОкружность и прямая не пересекаются если d r

Конечная часть плоскости, ограниченная окружностью

РадиусОкружность и прямая не пересекаются если d r

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаОкружность и прямая не пересекаются если d r

Отрезок, соединяющий две любые точки окружности

ДиаметрОкружность и прямая не пересекаются если d r

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяОкружность и прямая не пересекаются если d r

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяОкружность и прямая не пересекаются если d r

Прямая, пересекающая окружность в двух точках

Видео:Взаимное расположение окружности и прямой. 7 класс.Скачать

Взаимное расположение окружности и прямой. 7 класс.

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеОкружность и прямая не пересекаются если d rДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыОкружность и прямая не пересекаются если d rЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныОкружность и прямая не пересекаются если d rБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиОкружность и прямая не пересекаются если d rУ равных дуг равны и хорды.
Параллельные хордыОкружность и прямая не пересекаются если d rДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Окружность и прямая не пересекаются если d r

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыОкружность и прямая не пересекаются если d r

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыОкружность и прямая не пересекаются если d r

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиОкружность и прямая не пересекаются если d r

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныОкружность и прямая не пересекаются если d r

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиОкружность и прямая не пересекаются если d r

У равных дуг равны и хорды.

Параллельные хордыОкружность и прямая не пересекаются если d r

Дуги, заключённые между параллельными хордами, равны.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность и прямая не пересекаются если d r

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

ФигураРисунокТеорема
Пересекающиеся хордыОкружность и прямая не пересекаются если d r
Касательные, проведённые к окружности из одной точкиОкружность и прямая не пересекаются если d r
Касательная и секущая, проведённые к окружности из одной точкиОкружность и прямая не пересекаются если d r
Секущие, проведённые из одной точки вне кругаОкружность и прямая не пересекаются если d r

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность и прямая не пересекаются если d r

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Пересекающиеся хорды
Окружность и прямая не пересекаются если d r
Касательные, проведённые к окружности из одной точки
Окружность и прямая не пересекаются если d r
Касательная и секущая, проведённые к окружности из одной точки
Окружность и прямая не пересекаются если d r
Секущие, проведённые из одной точки вне круга
Окружность и прямая не пересекаются если d r
Пересекающиеся хорды
Окружность и прямая не пересекаются если d r

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность и прямая не пересекаются если d r

Касательные, проведённые к окружности из одной точки

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Секущие, проведённые из одной точки вне круга

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Тогда справедливо равенство

Окружность и прямая не пересекаются если d r

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Окружность и прямая не пересекаются если d r

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Окружность и прямая не пересекаются если d r

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Окружность и прямая не пересекаются если d r

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Окружность и прямая не пересекаются если d r

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Окружность и прямая не пересекаются если d r

откуда и вытекает требуемое утверждение.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Воспользовавшись теоремой 1, получим

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Воспользовавшись равенствами (1) и (2), получим

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Окружность и прямая не пересекаются если d r

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Окружность и прямая не пересекаются если d r

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Учебный лист по теме «Взаимное расположение прямой и окружности. Взаимное расположение двух окружностей»

Окружность и прямая не пересекаются если d r

по теме «Взаимное расположение прямой и окружности. Взаимное расположение двух окружностей»

— условия взаимного расположения прямой и окружности;

— определение секущей и касательной к окружности;

— свойства касательной к окружности;

— теорему о о перпендикулярности диаметра и хорды и обратную к ней;

— условия взаимного расположение двух окружностей;

— определение концентрических окружностей.

— проводить касательную к окружности;

— использовать свойства касательной при решении задач;

— решать задачи на применение теоремы о перпендикулярности диаметра и хорды;

— решать задачи на условия взаимного расположения прямой и окружности и двух окружностей.

В результате изучения темы нужно:

1. Геометрия. 7 класс. Ж. Кайдасов, Г. Досмагамбетова, В. Абдиев. Алматы «Мектеп». 2012

2. Геометрия. 7 класс. , . Алматы «Атамұра». 2012

3. Геометрия. 7 класс. Методическое руководство. . Алматы «Атамұра». 2012

4. Геометрия. 7 класс. Дидактический материал. . Алматы «Атамұра». 2012

5. Геометрия. 7 класс. Сборник задач и упражнений. , . Алматы «Атамұра». 2012

Приобретать знания – храбрость,

Приумножать их – мудрость,

А умело применять их – великое искусство.

Помни, что работать нужно по алгоритму.

Не забывай проходить проверку, делать пометки на полях, заполнять рейтинговый лист темы.

Пожалуйста, не оставляй без ответа, возникшие у тебя вопросы.

Будь объективен во время взаимопроверки, это поможет и тебе, и тому, кого ты проверяешь.

1) Рассмотри взаимное расположение прямой и окружности и заполни таблицу (3б):

Случай 1: Прямая не имеет с окружностью ни одной общей точки (не пересекаются)

a Окружность и прямая не пересекаются если d rd — расстояние от точки (центра окружности) до прямой

r – радиус окружности

d > r, Окружность и прямая не пересекаются если d r

Случай 2: Прямая и окружность имеют только одну общую точку (касаются)

Окружность и прямая не пересекаются если d rd — расстояние от точки (центра окружности) до прямой

r – радиус окружности

d = r, Окружность и прямая не пересекаются если d r

Случай 3: Прямая имеет с окружностью две общие точки (пересекаются)

Окружность и прямая не пересекаются если d rd — расстояние от точки (центра окружности) до прямой

r – радиус окружности

Вывод: Если R1 + R2 d, тогда окружности не пересекаются.

Окружность и прямая не пересекаются если d r2) Запиши определение и выучи его (1б):

Определение: Окружности, имеющие общий центр, называются концентрическими (d = 0).

3) Ответь на вопросы (3 б):

1) Как могут располагаться две окружность на плоскости?

2) От чего зависит расположение окружностей?

3) Верно ли утверждение, что две окружности могут пересекаться в трех точках?

4) Как располагаются окружности, если:

а) расстояние между центрами окружностей равно сумме их радиусов;

б) расстояние между центрами окружностей меньше суммы их радиусов;

в) расстояние между центрами больше суммы двух радиусов;

г) расстояние между центрами окружностей равно нулю.

5) К какому из перечисленных трех случаев взаимного расположения двух окружностей, относятся концентрические окружности?

6) Как называется прямая, проходящая через точку касания окружностей?

ПРОЙДИ ПРОВЕРКУ № 2

1) Реши на выбор четные или нечетные задачи (2б.):

1. Ука­зать ко­ли­че­ство общих точек пря­мой и окруж­но­сти, если:

а) рас­сто­я­ние от пря­мой до цен­тра окруж­но­сти – 6 см, а ра­ди­ус окруж­но­сти – 7 см;

б) рас­сто­я­ние от пря­мой до цен­тра окруж­но­сти – 7 см, а ра­ди­ус окруж­но­сти – 6 см;

в) рас­сто­я­ние от пря­мой до цен­тра окруж­но­сти – 8 см, а ра­ди­ус окруж­но­сти – 8 см.

2. Определить взаимное расположении прямой и окружности, если:

1. R=16cм, d=12см; 2. R=8 см, d=1,2 дм; 3. R=5 см, d=50мм

3. Каково взаимное расположения окружностей если:

d = 1дм, R1 = 0,8дм, R2 = 0,2дм

d = 40см, R1 = 110см, R2 = 70см

d = 12см, R1 = 5см, R2 = 3см

d = 15дм, R1 = 10дм, R2 = 22см

4. Укажите количество точек взаимодействия двух окружностей по радиусам и по расстоянию между центрами:

а) R = 4 см, r = 3 см, ОО1 = 9 см; б) R = 10 см, r = 5 см, ОО1 = 4 см

в) R = 4 см, r = 3 см, ОО1 = 6 см; г) R = 9 см, r = 7 см, ОО1 = 4 см.

2) Реши одну задачу на выбор (2б.):

1. Найти длины двух от­рез­ков хорды, на ко­то­рые раз­де­ля­ет ее диа­метр окруж­но­сти, если длина хорды – 16 см, а диа­метр ей пер­пен­ди­ку­ля­рен.

2. Найти длину хорды, если диа­метр ей пер­пен­ди­ку­ля­рен, а один из от­рез­ков, от­се­ка­е­мых диа­мет­ром от нее, равен 2 см.

3) Выполни на выбор четные или нечетны задачи на построение (2б):

1. Постройте две окружности радиусами 2 см и 4 см, расстояние между центрами которых равно нулю.

2. Начертите две окружности разных радиусов (3 см и 2 см), чтобы они касались. Отметьте отрезком расстояние между их центрами. Рассмотрите возможные варианты.

3. Постройте окружность с радиусом равным 3 см и прямую расположенную на расстоянии 4 см от центра окружности.

4. Постройте окружность с радиусом равным 4 см и прямую расположенную на расстоянии 2 см от центра окружности.

ПРОЙДИ ПРОВЕРКУ № 4

Молодец! Можно приступить к проверочной работе №2.

1) Найди ошибку в утверждении и исправь ее, обосновав свое мнение. Выбери любых два утверждения (4б.): А) Две окружности касаются внешним образом. Радиусы их равны R = 8 см и r = 2 см, расстояние между центрами d = 6.
Б) Две окружности имеют, по крайней мере, три общие точки.
В) R = 4, r = 3, d = 5. Окружности не имеют общих точек.
Г) R = 8, r = 6, d = 4. Меньшая окружность расположена внутри большей.
Д) Две окружности не могут располагаться так, что одна находится внутри другой.

2) Реши на выбор четные или нечетные задачи (66.):

1. Две окружности касаются друг друга. Радиус большей окружности равен 19 см, а радиус малой окружности меньше на 4 см. Найдите расстояние между центрами окружностей.

2. Две окружности касаются друг друга. Радиус большей окружности равен 26 см, а радиус малой окружности в 2 раза меньше. Найдите расстояние между центрами окружностей.

3. Возьмите две точки D и F так, чтобы DF = 6 см. Начертите две окружности (D, 2см) и (F, 3 см). Как расположены между собой эти две окружности? Сделайте вывод.

4. Расстояние между точками А и В равно 7 см. Начертите окружности с центрами в точках А и В, радиусами, равными 3 см и 4 см. Как расположены окружности? Сделайте вывод.

5. Между двумя концентрическими окружностями с радиусами 4 см и 8 см расположена третья окружность так, что она касается первые две окружности. Чему равен радиус этой окружности?

6. Окружности, радиусы которых равны 6 см и 2 см, пересекаются. Причем большая окружность проходит через центр меньшей окружности. Найдите расстояние между центрами окружностей.

ПРОЙДИ ПРОВЕРКУ №6

Проверочная работа № 1

Выбери один из вариантов теста и реши ( 10 вопросов, по 1 баллу за каждый):

1. Прямая, имеющая с окружностью две общие точки, называется…

А) хордой; В) диаметром;

С) секущей; D) касательной.

2. Через точку, лежащую на окружности, можно провести …….. касательных

С) ни одной; D) нет правильного ответа.

3. Если расстояние от центра окружности до прямой меньше длины радиуса окружности, тогда прямая …

А) касается окружности в одной точке; В) пересекает окружность в двух точках;

С) не пересекается с окружностью;

D) нет правильного ответа.

4. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая…

А) касается окружности в одной точке; В) пересекает окружность в двух точках;

С) не пересекается с окружностью;

D) нет правильного ответа.

5. Окружности не пересекаются и не касаются, если …

6. Касательная и радиус, проведенные в к точке касания.

А) параллельны; В) перпендикулярны;

С) совпадают; D) нет правильного ответа.

7. Окружности касаются внешним образом. Радиус меньшей окружности равен 3 см, радиус большей — 5 см. Чему равно расстояние между центрами?

А) 8 см; В) 2 с м; С) 15 см; D) 3 см.

8. Каково взаимное расположение двух окружностей, если расстояние между центрами равно 4, а радиусы равны 11 и 7:

А) внешнее касание; В) внутреннее касание;

С) пересекаются; D) не пересекаются.

9. Что можно сказать о взаимном расположении прямой и окружности, если диаметр окружности равен 7,2 см, а расстояние от центра окружности до прямой равно 0,4 дм:

А) касаются; В) не пересекаются.

С) пересекаются; D) нет правильного ответа.

10. Даны окружность с центром О и точка А. Где находится точка А, если радиус окружности равен 7 см, а длина отрезка ОА равна 70 мм?

А) внутри окружности; В) на окружности.

С) вне окружности; D) нет правильного ответа.

1. Прямая, имеющая с окружностью только одну общую точку и перпендикулярная радиусу, называется…

А) хордой; В) диаметром;

С) секущей; D) касательной.

2. Из точки, не лежащей на окружности, можно провести к окружности …….. касательных

С) ни одной; D) нет правильного ответа.

3. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая

А) касается окружности в одной точке; В) пересекает окружность в двух точках;

С) не пересекается с окружностью;

D) нет правильного ответа.

4. Окружности пересекаются в двух точках, если…

5. Окружности касаются в одной точке, если …

6. Окружности называются концентрическими, если …

7. Окружности касаются внутренним образом. Радиус меньшей окружности 3 см. Радиус большей окружности — 5 см. Чему равно расстояние между центрами окружностей?

А) 8 см; В) 2 с м; С) 15 см; D) 3 см.

8. Каково взаимное расположение двух окружностей, если расстояние между центрами равно 10, а радиусы равны 8 и 2:

А) внешнее касание; В) внутреннее касание;

С) пересекаются; D) не пересекаются.

9. Что можно сказать о взаимном расположении прямой и окружности, если диаметр окружности равен 7,2 см, а расстояние от центра окружности до прямой равно 3,25 см:

А) касаются; В) не пересекаются.

С) пересекаются; D) нет правильного ответа.

10. Даны окружность с центром О и точка А. Где находится точка А, если радиус окружности равен 7 см, а длина отрезка ОА равна 4 см?

А) внутри окружности;

В) на окружности.

С) вне окружности;

D) нет правильного ответа.

Оценка: 10 б. – «5», 9 — 8 б. – «4», 7 – 6 б. – «3», 5 б. и ниже – «2»

Проверочная работа № 2

1) Заполни таблицу. Выбери один из вариантов (6б):

🔥 Видео

Геометрия Хорды AB и CD окружности не пересекаются, а прямые AB и CD пересекаются в точке M см. рисСкачать

Геометрия Хорды AB и CD окружности не пересекаются, а прямые AB и CD пересекаются в точке M см. рис

ОКРУЖНОСТЬ (внешне касающиеся окружности с разными радиусами-хорды) ЧАСТЬ 27Скачать

ОКРУЖНОСТЬ (внешне касающиеся окружности с разными радиусами-хорды) ЧАСТЬ 27

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать

Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Урок по геометрии ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ОКРУЖНОСТИСкачать

Урок по геометрии ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ОКРУЖНОСТИ

ОГЭ математика. Задание 16. Окружность. Касательная.Скачать

ОГЭ математика. Задание 16. Окружность. Касательная.

Касательная и секущая к окружности.Скачать

Касательная и секущая к окружности.

Взаимное расположение прямой и окружности | Геометрия 7-9 класс #68 | ИнфоурокСкачать

Взаимное расположение прямой и окружности  | Геометрия 7-9 класс #68 | Инфоурок

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

Доказательство того, что радиус перпендикулярен касательной | Окружность |  Геометрия
Поделиться или сохранить к себе: