Окружность две секущие задача

Касательная к окружности

Окружность две секущие задача

О чем эта статья:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Окружность две секущие задача

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Окружность две секущие задача

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Окружность две секущие задача

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Окружность две секущие задача

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Окружность две секущие задача

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Окружность две секущие задача

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Окружность две секущие задача

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Окружность две секущие задача

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Окружность две секущие задача

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Окружность две секущие задача

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Окружность две секущие задача

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Окружность две секущие задача

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Окружность. Свойства отрезков пересекающихся хорд, секущих и касательных

Презентация к уроку

Цель: повысить мотивацию к обучению; развивать вычислительные навыки, сообразительность, умение работать в команде.

Окружность — это линия, состоящая из всех точек плоскости, которые находятся на заданном расстоянии от одной точки плоскости, называемой центром окружности.

На слайде изображена окружность, отмечен ее центр — точка О, проведены два отрезка: ОА и СВ. Отрезок ОА соединяет центр окружности с точкой на окружности. Он называется РАДИУСОМ (по-латыни radius — “спица в колесе”). Отрезок СВ соединяет две точки окружности и проходит через ее центр. Это диаметр окружности (в переводе с греческого – “поперечник”).

Также нам понадобится определение хорды окружности — это отрезок, соединяющий две точки окружности (на рисунке – хорда DE).

Давайте выясним вопрос о взаимном расположении прямой и окружности.

Следующий вопрос и он будет основным: выяснить свойства, которыми обладают пересекающиеся хорды, секущие и касательные.

Доказывать эти свойства вы будете на уроках математики, а наша задача научиться применять эти свойства при решении задач, так как они находят широкое применение на экзаменах и в форме ЕГЭ, и в форме ГИА.

Задание для команд.

  • Изобразить и записать свойство пересекающихся в точке Р хорд КМ и NF.
  • Изобразить и записать свойство касательной КМ и секущей КF.
  • Изобразить и записать свойство секущих КМ и МF.
  • Далее продолжим работать в парах над решением простейших задач по применению этих свойств:

    Используя данные на рисунке, найдите х. Слайд 5–6

    Кто быстрее, правильней. С последующим обсуждением и проверкой решения всех задач. Отвечающие зарабатывают для своей команды поощрительные баллы.

    Ну, а теперь приступим к решению более серьезных задач. Вашему вниманию предлагается три блока: пересекающиеся хорды, касательная и секущая, две секущие. Подробным образом разберем решение по одной задачи из каждого блока.

    (Разбирается решение с подробной записью №4, №7, №12)

    2. Практикум по решению задач

    а) Пересекающиеся хорды

    1. E – точка пересечения хорд AB и CD. AE=4, AB=10, СE:ED=1:6. Найти CD.

    Окружность две секущие задача

    Решение:

    2. E – точка пересечения хорд AB и CD. AB=17, CD=18, ED=2CE. Найти AE и BE.

    Окружность две секущие задача

    Решение:

    3. E – точка пересечения хорд AB и CD. AB=10, CD=11, BE=CE+1. Найти CE.

    Окружность две секущие задача

    Решение:

    4. E – точка пересечения хорд AB и CD. ED=2AE, CE=DE-1, BE=10. Найти CD.

    Окружность две секущие задача

    Решение:

    б) Касательная и секущая

    5. Из одной точки проведены к окружности касательная и секущая. Касательная равна 6, секущая – 18. Определить внутренний отрезок секущей.

    Окружность две секущие задача

    Решение:

    6. Из одной точки проведены к окружности касательная и секущая. Найти касательную, если известно, что она меньше внутреннего отрезка секущей на 4 и больше внешнего отрезка на 4.

    Окружность две секущие задача

    Решение:

    7. Из одной точки проведены к окружности касательная и секущая. Найти секущую, если известно, что внутренний её отрезок относится к внешнему, как 3:1, а длина касательной равна 12.

    Окружность две секущие задача

    Решение:

    8. Из одной точки проведены к окружности касательная и секущая. Найти внешний отрезок, секущей, если известно, что внутренний её отрезок 12, а длина касательной 8.

    Окружность две секущие задача

    Решение:

    9. Касательная и секущая, исходящие из одной точки, соответственно равны 12 и 24. Определить радиус окружности, если секущая удалена от центра на 12.

    Окружность две секущие задача

    Решение:

    10. Из одной точки проведены к окружности две секущие, внутренние отрезки которых соответственно равны 8 и 16. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой. Найти длину каждой секущей.

    Окружность две секущие задача

    Решение:

    11. Из одной точки проведены к окружности две секущие. Внешний отрезок первой секущей относится к своему внутреннему, как 1:3. Внешний отрезок второй секущей на 1 меньше внешнего отрезка первой и относится к своему внутреннему отрезку, как 1:8. Найти длину каждой секущей.

    Окружность две секущие задача

    Решение:

    12. Через точку А, которая находится вне окружности на расстоянии 7 от её центра, проведен прямая, пересекающая окружность в точках В и С. Найдите длину радиуса окружности, если АВ=3, ВС=5.

    Окружность две секущие задача

    Решение:

    13. Из точки А проведены к окружности секущая длиной 12 см и касательная, составляющая Окружность две секущие задачавнутреннего отрезка секущей. Найдите длину касательной.

    Окружность две секущие задача

    Решение:

    3. Закрепление знаний

    Считаю, что вы обладаете достаточным запасом знаний, чтобы отправится в небольшое путешествие по лабиринтам вашего интеллекта, посетив следующие станции:

    • Соображай-ка!
    • Решай-ка!
    • Отвечай-ка!

    На станции можно находиться не более 6 минут. За каждое верное решение задачи команда получает поощрительные баллы.

    Командам вручаются маршрутные листы:

    СтанцияНомера задачОтметка о решении
    Решай-ка!№1, №3
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    СтанцияНомера задачОтметка о решении
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    Решай-ка!№1, №3
    СтанцияНомера задачОтметка о решении
    Соображай-ка!№5, №8
    Отвечай-ка!№10, №11
    Решай-ка!№1, №3

    4. Подведение итогов

    Хотелось бы подвести итоги нашего занятия:

    Помимо новых знаний надеюсь, вы лучше познакомились друг с другом, приобрели опыт работы в команде. А как вы думаете, полученные знания находят где-то применение в жизни?

    Поэт Г. Лонгфелло был еще и математиком. Наверное, поэтому яркие образы, украшающие математические понятия, которые он использовал в своем романе “Каванг”, позволяют запечатлеть на всю жизнь некоторые теоремы и их применение. Читаем в романе следующую задачу:

    “Лилия, на одну пядь поднимавшаяся над поверхностью воды, под порывом свежего ветра коснулась поверхности озера в двух локтях от прежнего места; исходя из этого требовалось определить глубину озера” (1 пядь равна 10 дюймам, 2 локтя – 21 дюйму).

    А решается эта задача на основе свойства пересекающихся хорд. Посмотрите на рисунок, и станет ясно, как находится глубина озера.

    Видео:Окружность, касательная, секущая и хорда | МатематикаСкачать

    Окружность, касательная, секущая и хорда | Математика

    Математика. Задачи. Хорды, касательные и секущие.

    Окружность две секущие задача

    Хорды, касательные и секущие.

    Окружностью называется геометрическое место точек, равноудаленных от одной точки, которая называется центром окружности.

    Окружность две секущие задача

    Отрезок, соединяющий две точки окружности, называется хордой (на рисунке это отрезок Окружность две секущие задача). Хорда, проходящая через центр окружности, называется диаметром окружности.

    Хорда окружности обладает следующими свойствами:

    1. Хорды, находящиеся на одинаковом расстоянии от центра окружности, равны.
    2. Если хорды стягивают равные центральные углы, то они равны.
    3. Если диаметр перпендикулярен хорде, то он проходит через ее середину.
    4. Если вписанные углы опираются на одну хорду, то они равны.
    5. Две дуги равны, если они заключены между двумя равными хордами.
    6. Если пара вписанных углов опирается на одну и ту же хорду, а их вершины лежат по разные стороны хорды, то их сумма составляет 180°.
    7. Для любых двух хорд Окружность две секущие задачаи Окружность две секущие задача, пересекающихся в точке О, выполняется равенство: Окружность две секущие задача.

    Прямая, имеющая с окружностью одну общую точку, называется касательной (на рисунке отрезок Окружность две секущие задача).

    Прямая, имеющая с окружностью две общие точки, называется секущей (отрезок Окружность две секущие задача).

    Свойства касательной и секущей

    1. Касательная перпендикулярна радиусу, проведенному в точку касания.
    2. Отрезки касательных, проведенных из одной точки, равны.
    3. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:

    📸 Видео

    ☀️ГЕОМЕТРИЯ В ЕГЭ | ОКРУЖНОСТЬ И КАСАТЕЛЬНЫЕ, ХОРДЫ, СЕКУЩИЕ | ЗАДАНИЕ 3 ЕГЭ 2022 |Скачать

    ☀️ГЕОМЕТРИЯ В ЕГЭ | ОКРУЖНОСТЬ И КАСАТЕЛЬНЫЕ, ХОРДЫ, СЕКУЩИЕ | ЗАДАНИЕ 3 ЕГЭ 2022 |

    №672. Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекаетСкачать

    №672. Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает

    Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27858Скачать

    Окружность / Касательная, хорда, секущая / задача из ЕГЭ #27858

    Секущие в окружности и их свойство. Геометрия 8-9 классСкачать

    Секущие в окружности и их свойство. Геометрия 8-9 класс

    Секретная теорема из учебника геометрииСкачать

    Секретная теорема из учебника геометрии

    9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.Скачать

    9 класс. Геометрия. Теорема о пропорциональности отрезков хорд и в секущих окружности. 22.05.2020.

    Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

    Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

    Задача 6 №27867 ЕГЭ по математике. Урок 108Скачать

    Задача 6 №27867 ЕГЭ по математике. Урок 108

    Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

    Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

    Теорема об отрезках хорд и секущихСкачать

    Теорема об отрезках хорд и секущих

    Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать

    Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1

    ОКРУЖНОСТИ В ОГЭ ✨ #огэ #математика #егэ #геометрия #окружностьСкачать

    ОКРУЖНОСТИ В ОГЭ ✨               #огэ #математика #егэ #геометрия #окружность

    Задание 1. Окружность и две секущиеСкачать

    Задание 1. Окружность и две секущие

    Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

    Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

    №661. Найдите острый угол, образованный двумя секущими, проведенными из точки, лежащейСкачать

    №661. Найдите острый угол, образованный двумя секущими, проведенными из точки, лежащей

    Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

    Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)
    Поделиться или сохранить к себе: