Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).
Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .
Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .
Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .
- Свойства трапеции
- Свойства и признаки равнобедренной трапеции
- Вписанная окружность
- Площадь
- Трапеция.
- Любую трапецию можно описать окружность
- Если около трапеции можно описать окружность
- Трапеция. Свойства трапеции
- Свойства трапеции
- Свойства и признаки равнобедренной трапеции
- Вписанная окружность
- Площадь
- Трапеция.
- 🔥 Видео
Видео:Около трапеции описана окружностьСкачать
Свойства трапеции
1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.
3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.
Коэффициент подобия –
Отношение площадей этих треугольников есть .
4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
Видео:№710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.Скачать
Свойства и признаки равнобедренной трапеции
1. В равнобедренной трапеции углы при любом основании равны.
2. В равнобедренной трапеции длины диагоналей равны.
3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.
4. Около равнобедренной трапеции можно описать окружность.
5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Видео:№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любойСкачать
Вписанная окружность
Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то
Видео:Задача про трапецию, описанную около окружностиСкачать
Площадь
или где – средняя линия
Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Трапеция.
Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.
Трапеция называется равнобедренной, если её боковые стороны равны.
Трапеция называется прямоугольной, если у нее два угла прямые.
Основные свойства трапеции:
- Сумма углов при каждой боковой стороне трапеции равна 180°.
- Средняя линия трапеция параллельна её основаниям и равна их полусумме.
- В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
- Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
- Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
- Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
- Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
- Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
- Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
- Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
- Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.
Свойства равнобедренной трапеции:
- Диагонали равны.
- Углы при основании равны.
- Сумма противоположных углов равна 180°.
- Около равнобедренной трапеции можно описать окружность.
- Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.
Описанная трапеция:
- Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
- Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
- Радиус вписанной окружности равен половине высоты трапеции.
Вписанная трапеция:
- Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.
Площадь трапеции:
- Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
- Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Любую трапецию можно описать окружность
Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать
Если около трапеции можно описать окружность
Если около трапеции можно описать окружность, что можно сказать о виде этой трапеции?
(IV признак равнобедренной трапеции)
Если около трапеции можно описать окружность, то она — равнобедренная.
Дано: ABCD — трапеция,
окружность (O; R) — описанная,
Доказать : трапеция ABCD — равнобедренная.
Если около четырехугольника можно описать окружность, то сумма его противоположных углов равна 180 градусов.
Следовательно, в трапеции ABCD
Значит, трапеция ABCD- равнобедренная (по III признаку).
Видео:Трапеция и вписанная окружностьСкачать
Трапеция. Свойства трапеции
Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).
Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .
Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .
Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Свойства трапеции
1. Средняя линия трапеции параллельна основаниям и равна их полусумме.
2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.
3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.
Коэффициент подобия –
Отношение площадей этих треугольников есть .
4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Свойства и признаки равнобедренной трапеции
1. В равнобедренной трапеции углы при любом основании равны.
2. В равнобедренной трапеции длины диагоналей равны.
3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.
4. Около равнобедренной трапеции можно описать окружность.
5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать
Вписанная окружность
Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то
Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать
Площадь
или где – средняя линия
Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать
Трапеция.
Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.
Трапеция называется равнобедренной, если её боковые стороны равны.
Трапеция называется прямоугольной, если у нее два угла прямые.
Основные свойства трапеции:
- Сумма углов при каждой боковой стороне трапеции равна 180°.
- Средняя линия трапеция параллельна её основаниям и равна их полусумме.
- В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
- Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
- Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
- Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
- Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
- Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
- Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
- Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
- Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.
Свойства равнобедренной трапеции:
- Диагонали равны.
- Углы при основании равны.
- Сумма противоположных углов равна 180°.
- Около равнобедренной трапеции можно описать окружность.
- Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.
Описанная трапеция:
- Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
- Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
- Радиус вписанной окружности равен половине высоты трапеции.
Вписанная трапеция:
- Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.
Площадь трапеции:
- Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
- Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.
🔥 Видео
ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikajСкачать
8 класс, 39 урок, Описанная окружностьСкачать
№700. Докажите, что в любой ромб можно вписать окружность.Скачать
Как узнать, что около четырехугольника можно описать окружность?😍 #математика #математикаегэ #егэСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
ОГЭ/База Все прототипы задач на окружностиСкачать
Кто нибудь знает при каких условиях в трапецию можно вписать окружность Как описать тест УчителюСкачать