Около любой трапеции можно описать окружность

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Около любой трапеции можно описать окружность

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Около любой трапеции можно описать окружность

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Около любой трапеции можно описать окружность

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Около любой трапеции можно описать окружность

Видео:Около трапеции описана окружностьСкачать

Около трапеции описана окружность

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Около любой трапеции можно описать окружность

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Около любой трапеции можно описать окружность

3. Треугольники Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Около любой трапеции можно описать окружность

Отношение площадей этих треугольников есть Около любой трапеции можно описать окружность.

Около любой трапеции можно описать окружность

4. Треугольники Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Около любой трапеции можно описать окружность

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Около любой трапеции можно описать окружность

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Около любой трапеции можно описать окружность

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Около любой трапеции можно описать окружность

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Около любой трапеции можно описать окружность

Видео:№710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.Скачать

№710. Докажите, что если около трапеции можно описать окружность, то эта трапеция равнобедренная.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Около любой трапеции можно описать окружность

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Около любой трапеции можно описать окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Около любой трапеции можно описать окружность

Видео:№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любойСкачать

№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой

Вписанная окружность

Если в трапецию вписана окружность с радиусом Около любой трапеции можно описать окружностьи она делит боковую сторону точкой касания на два отрезка — Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, то Около любой трапеции можно описать окружность

Около любой трапеции можно описать окружность

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Площадь

Около любой трапеции можно описать окружностьили Около любой трапеции можно описать окружностьгде Около любой трапеции можно описать окружность– средняя линия

Около любой трапеции можно описать окружность

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Трапеция.

Около любой трапеции можно описать окружность

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Любую трапецию можно описать окружность

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Если около трапеции можно описать окружность

Если около трапеции можно описать окружность, что можно сказать о виде этой трапеции?

(IV признак равнобедренной трапеции)

Если около трапеции можно описать окружность, то она — равнобедренная.

Около любой трапеции можно описать окружностьДано: ABCD — трапеция,

окружность (O; R) — описанная,

Доказать : трапеция ABCD — равнобедренная.

Если около четырехугольника можно описать окружность, то сумма его противоположных углов равна 180 градусов.

Следовательно, в трапеции ABCD

Значит, трапеция ABCD- равнобедренная (по III признаку).

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Около любой трапеции можно описать окружность

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Около любой трапеции можно описать окружность

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Около любой трапеции можно описать окружность

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Около любой трапеции можно описать окружность

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Около любой трапеции можно описать окружность

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Около любой трапеции можно описать окружность

3. Треугольники Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Около любой трапеции можно описать окружность

Отношение площадей этих треугольников есть Около любой трапеции можно описать окружность.

Около любой трапеции можно описать окружность

4. Треугольники Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Около любой трапеции можно описать окружность

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Около любой трапеции можно описать окружность

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Около любой трапеции можно описать окружность

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Около любой трапеции можно описать окружность

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Около любой трапеции можно описать окружность

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Около любой трапеции можно описать окружность

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Около любой трапеции можно описать окружность

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Около любой трапеции можно описать окружность

Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Вписанная окружность

Если в трапецию вписана окружность с радиусом Около любой трапеции можно описать окружностьи она делит боковую сторону точкой касания на два отрезка — Около любой трапеции можно описать окружностьи Около любой трапеции можно описать окружность, то Около любой трапеции можно описать окружность

Около любой трапеции можно описать окружность

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Площадь

Около любой трапеции можно описать окружностьили Около любой трапеции можно описать окружностьгде Около любой трапеции можно описать окружность– средняя линия

Около любой трапеции можно описать окружность

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Трапеция.

Около любой трапеции можно описать окружность

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

🔥 Видео

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikajСкачать

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikaj

8 класс, 39 урок, Описанная окружностьСкачать

8 класс, 39 урок, Описанная окружность

№700. Докажите, что в любой ромб можно вписать окружность.Скачать

№700. Докажите, что в любой ромб можно вписать окружность.

Как узнать, что около четырехугольника можно описать окружность?😍 #математика #математикаегэ #егэСкачать

Как узнать, что около четырехугольника можно описать окружность?😍 #математика #математикаегэ #егэ

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ОГЭ/База Все прототипы задач на окружностиСкачать

ОГЭ/База Все прототипы задач на окружности

Кто нибудь знает при каких условиях в трапецию можно вписать окружность Как описать тест УчителюСкачать

Кто нибудь знает при каких условиях в трапецию можно вписать окружность Как описать тест Учителю
Поделиться или сохранить к себе: