Общий угол треугольников определение

Треугольники
Содержание
  1. Определение
  2. Виды углов в треугольнике:
  3. Виды треугольников:
  4. Признаки равенства треугольников
  5. Треугольник. Формулы и свойства треугольников.
  6. Типы треугольников
  7. По величине углов
  8. По числу равных сторон
  9. Вершины углы и стороны треугольника
  10. Свойства углов и сторон треугольника
  11. Теорема синусов
  12. Теорема косинусов
  13. Теорема о проекциях
  14. Формулы для вычисления длин сторон треугольника
  15. Медианы треугольника
  16. Свойства медиан треугольника:
  17. Формулы медиан треугольника
  18. Биссектрисы треугольника
  19. Свойства биссектрис треугольника:
  20. Формулы биссектрис треугольника
  21. Высоты треугольника
  22. Свойства высот треугольника
  23. Формулы высот треугольника
  24. Окружность вписанная в треугольник
  25. Свойства окружности вписанной в треугольник
  26. Формулы радиуса окружности вписанной в треугольник
  27. Окружность описанная вокруг треугольника
  28. Свойства окружности описанной вокруг треугольника
  29. Формулы радиуса окружности описанной вокруг треугольника
  30. Связь между вписанной и описанной окружностями треугольника
  31. Средняя линия треугольника
  32. Свойства средней линии треугольника
  33. Периметр треугольника
  34. Формулы площади треугольника
  35. Формула Герона
  36. Равенство треугольников
  37. Признаки равенства треугольников
  38. Первый признак равенства треугольников — по двум сторонам и углу между ними
  39. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  40. Третий признак равенства треугольников — по трем сторонам
  41. Подобие треугольников
  42. Признаки подобия треугольников
  43. Первый признак подобия треугольников
  44. Второй признак подобия треугольников
  45. Третий признак подобия треугольников
  46. Треугольник. Формулы определения и свойства треугольников.
  47. Определение треугольника
  48. Классификация треугольников
  49. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  50. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  51. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  52. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  53. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  54. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  55. Свойства треугольника
  56. 1.Свойства углов и сторон треугольника.
  57. 2.Теорема синусов.
  58. 3. Теорема косинусов.
  59. 4. Теорема о проекциях
  60. Медианы треугольника
  61. Свойства медиан треугольника:
  62. Формулы медиан треугольника

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Определение

Треугольник — это геометрическая фигура, которая состоит из
трех точек, не лежащих на одной прямой и трех отрезков,
соединяющих эти точки.

Точки называются вершинами треугольника.
Отрезки называются сторонами треугольника.

  • три угла
  • три вершины
  • три стороны

Видео:8 класс, 20 урок, Определение подобных треугольниковСкачать

8 класс, 20 урок, Определение подобных треугольников

Виды углов в треугольнике:

Чтобы лучше понять какие бывают треугольники узнаем
какие бывают углы в треугольниках.

  • Острый угол
    Это любой угол меньше 90°.

Общий угол треугольников определение

  • Тупой угол
    Это любой угол больше 90°, но меньше 180°.

Общий угол треугольников определение

  • Прямой угол
    Это угол 90°.

Общий угол треугольников определение

  • Развернутый угол
    Это угол 180°.

Общий угол треугольников определение

Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать

8 класс, 21 урок, Отношение площадей подобных треугольников

Виды треугольников:

  • Острый треугольник
    Это треугольник в котором все углы острые.

Общий угол треугольников определение

  • Тупоугольный треугольник
    Это треугольник в котором один из углов тупой.

Общий угол треугольников определение

  • Прямоугольный треугольник
    Это треугольник в котором один из углов прямой.

Общий угол треугольников определение

  • Равнобедренный треугольник
    Это треугольник в котором две боковые стороны равны.
    Общий угол треугольников определение
  • Равносторонний треугольник
    Это треугольник в котором все стороны равны.
    Общий угол треугольников определение

Видео:Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

Признаки равенства треугольников

С помощью признаков равенства треугольников можно
доказать что те или иные треугольники равны между собой.

Видео:Найдите уголСкачать

Найдите угол

Треугольник. Формулы и свойства треугольников.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Типы треугольников

По величине углов

Общий угол треугольников определение

Общий угол треугольников определение

Общий угол треугольников определение

По числу равных сторон

Общий угол треугольников определение

Общий угол треугольников определение

Общий угол треугольников определение

Видео:Площади треугольников с равным углом.Скачать

Площади треугольников с равным углом.

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Общий угол треугольников определение

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:59. Определение подобных треугольниковСкачать

59. Определение подобных треугольников

Медианы треугольника

Общий угол треугольников определение

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Биссектрисы треугольника

Общий угол треугольников определение

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Площадь Сечения: Разбираемся в Тайнах ГеометрииСкачать

Площадь Сечения: Разбираемся в Тайнах Геометрии

Высоты треугольника

Общий угол треугольников определение

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Геометрия 8 класс (Урок№14 - Определение подобных треугольников. Отношение площадей подобных фигур.)Скачать

Геометрия 8 класс (Урок№14 - Определение подобных треугольников. Отношение площадей подобных фигур.)

Окружность вписанная в треугольник

Общий угол треугольников определение

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Внешний угол треугольникаСкачать

Внешний угол треугольника

Окружность описанная вокруг треугольника

Общий угол треугольников определение

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Определение угла между высотами треугольникаСкачать

Определение угла между высотами треугольника

Связь между вписанной и описанной окружностями треугольника

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Средняя линия треугольника

Свойства средней линии треугольника

Общий угол треугольников определение

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Периметр треугольника

Общий угол треугольников определение

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Формулы площади треугольника

Общий угол треугольников определение

Формула Герона

S =a · b · с
4R

Видео:видеоурок "Определение подобных треугольников"Скачать

видеоурок "Определение подобных треугольников"

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Задача на подобие треугольников 1частьСкачать

Задача на подобие треугольников 1часть

Подобие треугольников

Общий угол треугольников определение

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Геометрия 8 класс Определение подобных треугольниковСкачать

Геометрия 8 класс Определение подобных треугольников

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Видео:Отношение площадей треугольников с равным угломСкачать

Отношение площадей треугольников с равным углом

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Общий угол треугольников определение

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Общий угол треугольников определение

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Общий угол треугольников определение

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Общий угол треугольников определение

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Общий угол треугольников определение

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Общий угол треугольников определение

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Общий угол треугольников определение

Свойства треугольника

1.Свойства углов и сторон треугольника.

Общий угол треугольников определение

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Общий угол треугольников определение

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Общий угол треугольников определение

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

Поделиться или сохранить к себе: